

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química, Bioquímica y Farmacia Departamento: Quimica

(Programa del año 2006)

Area: Qca Analitica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
TECNICAS SEPARATIVAS	ANAL. QUIMICO	8/98	3	1c

II - Equipo Docente

Docente	Función	Cargo	Dedicación
FONTAN, CARLOS ALBERTO	Prof. Responsable	P.TIT EXC	40 Hs
PORTA, LUIS FELIX RAUL	Prof. Colaborador	P.ASO EXC	40 Hs
KAPLAN, MARCOS MANUEL	Auxiliar de Práctico	A.1RA SEM	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
6 Hs	4 Hs	0 Hs	3 Hs	9 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1 Cuatrimestre	

	D	uración	
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
13/03/2006	16/05/2006	14	120

IV - Fundamentación

El Curso Técnicas Separativas se dicta en el tercer año de la carrera y se ubica entre cursos básicos y avanzados de Química Analítica. Sus contenidos complementan, por una parte, al conjunto de procesos encaminados a la determinación cualitativa, cuantitativa y estructural de la materia vistos en otros cursos de Química Analítica. Por otra parte, considerando el enorme avance de la tecnología de los instrumentos disponibles para realizar separaciones continuas-especialmente las cromatográficas y las electroforéticas- sirven para introducir el concepto de la integración de los procesos separativos con el determinativo en una sola etapa.

V - Objetivos

El objetivo del Curso es introducir al alumno tanto en la importancia como en la problemática de las separaciones y en la preconcentración de compuestos químicos, con propósitos analíticos. Se orienta hacia el estudio de los fundamentos de las técnicas las separativas discontinuas (o no cromatográficas) y de las continuas (o cromatográficas). Se incluye el tema del enmascaramiento de reacciones analíticas desde el punto de vista de las separaciones, como pseudoseparaciones. También trata las separaciones por precipitación química convencional, utilizando reactivos orgánicos e inorgánicos, remarcando la importancia de este tipo de separaciones para la preconcentración de especies químicas que se encuentran en solución al nivel de concentraciones de sub-vestigios

VI - Contenidos

Separaciones cuantitativas: definición.Generalidades. Importancia y necesidad de las separaciones en química analítica. Propósitos de las separaciones. Técnicas analíticas de separación: clasificación según criterios estáticos y dinámicos. Errores genéricos originados por los procesos separativos: grado de recuperación y de separación. Separación y preconcentración.

Bolilla 2.-

Extracción líquido-líquido: concepto. Generalidades. Aspectos termodinámicos. Equilibrio de distribución. Constante de reparto. Constante de distribución. Relación de distribución. Factor de recuperación, de separación y de enriquecimiento. Sinergismo. Antisinergismo. Cinética de la extracción líquido-líquido. Extracción mediante un contacto y multicontacto. Extracción en contracorriente. Aplicaciones de la extracción líquido-líquido.

Bolilla 3.-

Extracción de quelatos metálicos: concepto. Generalidades. La extracción de quelatos metálicos como una reacción química. Relación de distribución. Factores que afectan la extracción de quelatos: pH, concentración de reactivo quelante. pH1/2 concepto y utilidad. Extracción de pares iónicos. Pseudoseparaciones. Preconcentración por coprecipitación. Aplicaciones analíticas.

Bolilla 4.-

Métodos separativos continuos. Cromatografía. Definición. Clasificación (I.U.P.A.C.). Cromatografía plana. Principios teóricos: concepto de Rf y de Rx. Cromatografía en papel. Distintos tipos de papel para cromatografía. Siembra. Procedimientos de desarrollo: ascendente, descendente y horizontal. Revelado y sistemas de detección. Cromatografía en capa fina. Generalidades. Ventajas de la CCP frente a la CP. Materiales: placas y fases estacionarias. Cromatografía en capa fina de alta resolución.

Bolilla 5.-

Cromatografía en columna. Consideraciones generales. Cromatograma. Forma del pico cromatográfico. Constante de distribución. Factor de selectividad y de capacidad. Eficacia de la columna cromatográfica. Evaluación experimental de la altura y del número de platos teóricos. Ensanchamiento intracolumnar de la banda cromatográfica: teoría cinética de la cromatografía. Ecuación de Van Deemter. Resolución de la columna cromatográfica. Aplicaciones: análisis cualitativo y cuantitativo. Distintas formas de obtener información cuantitativa.

Bolilla 6-

Cromatografía de fase gaseosa. Instrumentos para la cromatografía de gases. Inyección de la muestra. Columnas cromatográficas: rellenas y capilares. Requisitos de la fase estacionaria. Fases estacionarias de uso frecuente. Detectores. Características del detector ideal. Detector de ionización por llama, de conductividad térmica; de captura de electrones; de emisión atómica. Acoplamiento de la cromatografía a la espectroscopía infrarroja y de masas.

Bolilla 7.-

Cromatografía en columna de fase líquida: clásica y de alto rendimiento (CLAR o HPLC). Instrumentación para la cromatografía líquida de alto rendimiento. Sistemas de impulsión de solventes. Elución isocrática y con gradiente de solventes. El problema de la inyección de la muestra. Columnas para la CLAR. Rellenos para la cromatografía de reparto: fases líquidas adsorbidas y unidas químicamente. Cromatografía de fase directa e inversa. Detectores: de absorbancia; de fluorescencia; de índice de refracción; de dispersión óptica. Detectores electroquímicos. La CLAR acoplada a la espectrometría de masas.

Bolilla 8.-

Separaciones por intercambio iónico. Intercambiadores de iones: conceptos generales. Distintos tipos de sustancias intercambiadoras de iones: inorgánicas, orgánicas, aniónicas, catiónicas. Equilibrio del intercambio de iones: coeficiente de selectividad. Cromatografía de intercambio iónico. Generalidades. Cromatografía iónica. Equilibrios del I.I.. Tipos de rellenos de columnas. C.I. con columnas supresoras y con una sola columna. Aplicaciones

Bolilla 9.-

Electroforesis. Concepto. Propiedades generales de los electrolitos. Extensión de las leyes generales a los sistemas dispersos. Electroforesis en medios líquidos. Electroforesis sobre soportes. Técnicas. Ventajas y limitaciones. Condiciones experimentales. Electroforesis con evaporación controlada o no. Otros tipos de electroforesis. Evaluación de los resultados. Aplicaciones en el campo orgánico e inorgánico. Electroforesis capilar. Concepto. Instrumentación. Aplicaciones.

VII - Plan de Trabajos Prácticos

- 1.- Preparación de soluciones para ser utilizadas en los prácticos posteriores (soluciones amortiguadoras de pH). Entrenamiento en el uso correcto de material de laboratorio (balanzas, pH-metro, material de vidrio, etc.)
- 2.- Preconcentración: extracción de hierro como oxinato y retroextracción con solución acuosa ácida. Determinación cuantitativa del hierro preconcentrado por comparación de colores.
- 3.- Extracción de quelatos metálicos. Determinación del pH óptimo para la extracción: construcción experimental de la curva de extracción en función del pH de los oxinatos de hierro(III) y de cobalto(II)
- 4.- Extracción de quelatos metálicos. Separación y determinación espectrométrica de Fe(III) y Co(II) como oxinatos.
- 5.- Separación e identificación de Cu, Co y Ni por cromatografía sobre papel.
- 6.- Separación de metil- etil- y propilparabeno por cromatografía líquida de alto rendimiento.
- 7.- Determinación de proteínas séricas por electroforesis sobre soporte de acetato de celulosa.

VIII - Regimen de Aprobación

CONCURRENCIA A TRABAJOS PRACTICOS DE LABORATORIO:

El alumno que no concurriere perderá el derecho a la realización de la práctica, en ese o en cualquier otro turno, pudiendo recuperarla en la fecha que oportunamente se fijare, siempre que cumpla los requisitos que se fijan más adelante. Será requisito indispensable que todo alumno concurra al laboratorio munido de la correspondiente Guía de Trabajos Prácticos o un esquema sintético de la misma, cuaderno de notas, guardapolvo y repasador.

APROBACION DE LOS TRABAJOS PRACTICOS DE LABORATORIO:

- 1.- El alumno deberá demostrar un pleno conocimiento de la parte teórica referente a la práctica o experiencia, al ser interrogado en forma oral y/o escrita, antes, durante o a la finalización del Trabajo Práctico.
- 2.-El alumno deberá tener una habilidad manual acorde con el tipo de experiencia que realice.
- 3.- Registrará en un \"cuaderno de laboratorio\" en forma ordenada los resultados obtenidos y las operaciones numéricas que cada cálculo le demande
- 5.- El alumno deberá obtener en sus determinaciones resultados aceptablemente coincidentes con los reales. El error aceptado dependerá del tipo y técnica de análisis utilizada y será fijado por el Curso en cada caso.
- 5.- A la finalización de cada práctica deberá entregar el material en perfectas condiciones de orden y limpieza. Para la aprobación de cada trabajo práctico, el alumno deberá dar cumplimiento a los cinco requisitos precitados.

TRABAJOS PRACTICOS DE PROBLEMAS:

El Curso proporcionará a los alumnos con la debida anticipación, los enunciados de los problemas que deberán resolver. Además, fijará horarios de consultas para la verificación de los resultados numéricos alcanzados por los alumnos, discusión del método empleado para su resolución, y, eventualmente para la explicación de problemas tipos.

REGULARIZACIÓN DEL CURSO.

TRABAJOS PRACTICOS: De acuerdo a las reglamentaciones vigentes (Ord. CS-13/030 el alumno deberá aprobar en primera instancia el setenta y cinco (75 %) (o su fracción entera menor) del Plan de Trabajos Prácticos del Curso. Deberá completar la aprobación del noventa por ciento (90%) (o su fracción entera menor) en la primera recuperación. En la segunda recuperación deberá totalizar la aprobación del cien por ciento del Plan de Trabajos Prácticos.

PARCIALES: El alumno deberá aprobar el 100% de las evaluaciones parciales implementadas,si las ubiere. Tendrá derecho a una recuperación por parcial y podrá recuperar en segunda instancia solamente 1 (uno) parcial adeudado.

APROBACION POR EL REGIMEN DE PROMOCIÓN SIN EXAMEN.

El alumno deberá cumplir con las exigencias de correlatividad que establece el Plan de Estudios de la carrera de Analista Químico.Para mantener la condición de PROMOCIONAL el alumno deberá cumplir como mínimo con una asistencia del ochenta por ciento (80%) a las actividades teóricas y a los Trabajos Prácticos programados en el Curso, y deberá tener

aprobado el cien por ciento (100%) de los Trabajos Prácticos. El alumno tendrá la posibilidad de aprobar el cien por ciento (100%) de los Trabajos Prácticos programados recuperando no más del veinte por ciento (20%) de los que adeude. El alumno rendirá 3 (tres) examinaciones parciales que versarán sobre el contenido temático teórico-práctico desarrollado en el curso. El alumno tendrá derecho a recuperar un número no mayor del veinte por ciento (20%) del total de los exámenes parciales, o su fracción entera menor. La nota de aprobación de cada evaluación parcial no será menor que siete (7). En el caso de no satisfacer alguna de las exigencias de promocionalidad, el alumno automáticamente pasará al Régimen de Alumnos Regulares.

EXAMEN DE ALUMNOS QUE HAYAN PERDIDO SU CONDICION DE REGULARES Y ESTEN AUTORIZADOS A RENDIR:

Los alumnos serán sometidos a tres tipos de pruebas de conocimientos, todas de carácter eliminatorio.

- 1.- La primera prueba consistirá en la resolución de problemas numéricos, problemas conceptuales y cuestionario sobre temas teóricos alusivos. Esta prueba no tendrá calificación numérica computable a los fines de la nota final; será de carácter eliminatorio, y para su aprobación se requerirá dar satisfacción al 75% de las exigencias solicitadas.
- 2.- La segunda parte será de índole práctica y consistirá en la realización de un Trabajo Práctico de los efectuados en el curso inmediato anterior al momento de la prueba. Para su aprobación deberá demostrarse una aceptable habilidad operativa junto a una clara y racional presentación de los valores determinados, y una coincidencia aceptable entre los últimos y los verdaderos.

Al igual que la anterior, esta prueba tampoco tendrá calificación numérica computable a los fines de la nota final y será igualmente de carácter eliminatorio.

- 3.- El tema de las pruebas 1 y 2 será el mismo y a él se llegará por sorteo de los tres propuestos por el Curso, realizado en presencia de los interesados
- 4.- La prueba final será oral o escrita y en la misma se procederá del mismo modo que para el caso de alumnos regulares. La calificación de ésta prueba será la única que se asentará en la planilla y libreta respectiva.

IX - Bibliografía Básica

- [1] 1.-M. Valcarcel Cases y A.Gómez Hens, \\\\\\\\\"Técnicas Analíticas de Separación\\\\\\\\\", Reverté, 1988.
- [2] 2.- J. Calving Giddings \\\\\\\\\\\"Unified Separation Science\\\\\\\\\\\, John Wiley & Sons, Inc., 1991
- [3] 3.- Yu Zolotov, \\\\\\"Extraction of Chelates Compounds\\\\\\\\", Ann Arbor, London, 1970.
- [5] 5.- A. Ringbom, \\\\\\\"Formación de Complejos en Química Analítica\\\\\\\\\,", Ed Alhambra, 1979.
- [7] 7.- D.Skoog y D. West. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,, 4ta ed., Mc Graw Hill, 1989.
- [8] 8.- I.M. Kolthoff, E.B. Sandell, E.J. Meehan y S.Bruckenstein, \\\\\\\\"Análisis Químico Cuantitativo\\\\\\\\\,",
- [9] 4ta ed., Ed. Nigar SRL, 1972.
- [11] Analítica Cuantitativa\\\\\\\\", 14ta ed, Paraninfo, 1992.
- [13] Iberoamérica
- [14] 11.- Apuntes de la asignatura.

X - Bibliografia Complementaria

[1]

XI - Resumen de Objetivos

El objetivo del Curso es introducir al alumno tanto en la importancia como en la problemática de las separaciones y en la preconcentración de compuestos químicos, con propósitos analíticos. Se orienta hacia el estudio de los fundamentos de las técnicas las separativas discontinuas (o no cromatográficas) y de las continuas o cromatográficas. Se incluye el tema del enmascaramiento de reacciones analíticas desde el punto de vista de las separaciones, como pseudoseparaciones. También trata las separaciones por precipitación química convencional, utilizando reactivos inorgánicos e inorgánicos, remarcando la

importancia de este tipo de separaciones para la preconcentración de especies químicas que se encuentran en solución al nivel de concentraciones de sub-vestigios

XII - Resumen del Programa

- Tema 1.- Separación de sustancias químicas.Definición.Necesidad e importancia de las separaciones y de la preconcentración en el Análisis Químico Cualitativo y Cuantitativo.Conceptos generales. Clasificación de las técnicas separativas.
- Tema 2.- Extracción líquido-líquido mediante un solo contacto y mediante contactos múltiples. Conceptos, definiciones y aplicaciones analíticas. Extracción de quelatos metálicos y de pares iónicos: sus fundamentos termodinámicos y cinéticos. Aplicaciones.
- Tema 3.- Separaciones por precipitación, pseudoseparaciones e intecambio iónico. Este tema comprende globalmente las separaciones por precipitación química convencional, el enmascaramiento desde el punto de vista de las separaciones, considerado como una pseudoseparación .
- Tema 4: Separaciones cromatográficas.Introducción a los métodos cromatográficos.. Cromatografía sobre papel. Cromatografía en fase gaseosa. Cromatografía en fase líquida, clásica y de alto rendimiento.Cromatografía de intercambio iónico.Generalidades. Instrumentación. Aplicaciones.
- Tema 5.- Electroforesis Clásica y Capilar. Concepto. Técnicas e instrumentación. Aplicaciones.

XIII - Imprevistos
