

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química, Bioquímica y Farmacia Departamento: Quimica

(Programa del año 2006) (Programa en trámite de aprobación) (Presentado el 19/05/2006 17:28:02)

Area: Qca Organica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA ORGANICA I	ING. EN ALIMENTOS	24/01	2	1c

II - Equipo Docente

Docente	Función	Cargo	Dedicación
CARRIZO, ROBERTO ASCENCIO	Prof. Responsable	P.ASO EXC	40 Hs
BISOGNO, FABRICIO ROMAN	Auxiliar de Práctico	A.1RA SIM	10 Hs
FERRARI, MONICA MARTA	Auxiliar de Laboratorio	A.2DA SIM	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
80 Hs	Hs	Hs	10 Hs	6 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1 Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
13/03/2006	16/06/2006	14	90

IV - Fundamentación

La Química Orgánica es la Química de los componentes principales de los Alimentos. En tal sentido en este curso se realizará una presentación clara, sencilla y uniforme de los conceptos básicos mas importantes teniendo en cuenta el objetivo principal de la carrera y de que es la primera vez se aborda el estudio de la Qca. Orgánica. Se imparten en este curso los fundamentos generales que ayudan al alumno a comprender las propiedades químicas y físcas de los compuestos orgánicos, que luego se agruparán de acuerdo a su función química. Se abordará en forma simple y didáctica los diferentes mecanismos de reacción.

V - Objetivos

Spn objetivos de este curso:

- 1- Alcanzar un adecuado conocimiento de la relación estructura molecular, propiedades fisico-químicas de los compuestos orgánicos.
- 2- Dominar en forma integrada y sistemática los principales mecanismos de reacción que operan en las moléculas orgánicas.
- 3-Integrar loss datos experimentales con las teorías de enlace y mecanismos de reacción.
- 4- Relacionar en forma sistemática lo visto con la estructura de los alimentos

VI - Contenidos

Tema 1: Estructura electrónica y propiedades. Configuración electrónica. Orbitales atómicos. Revisión de las teorías del enlace químico. Tipos de enlaces. Concepto de orbital molecular. Carga formal. Hibridación de orbitales. Hibridación tetraédrica (sp3): estructura de metano y etano. Hibridación trigonal (sp2): estructura de etileno. Hibridación digonal (sp): estructura de acetileno. Polaridad de los enlaces. Moléculas polares y no polares. Efecto

Inductivo. Interacciones no enlazantes entre moléculas. Interacciones dipolo-dipolo. Interacciones de Van der Waals. Enlace puente hidrógeno. Correlación entre estructura y propiedades físicas. Acidos y Bases. Teorías de Bronsted - Lowry y de Lewis.

Tema 2: Grupos funcionales. Hidrocarburos alifáticos y aromáticos. Grupos funcionales con enlaces simples: haluros de alquilos; alcoholes; éteres; tioles; aminas alifáticas. Grupos funcionales con enlaces múltiples: Grupo Carbonilo: aldehídos y cetonas; ácidos carboxílicos y derivados. Compuestos aromáticos. Derivados halogenados, nitrados y sulfonados. Fenoles. Aminas aromáticas; diazo- y azocompuestos.

Tema 3: Hidrocarburos y derivados. Hidrocarburos saturados. Alcanos y Cicloalcanos. Estructura. Nomenclatura. Isomería. Propiedades. Fuentes naturales de alcanos. Petróleo. Reacciones. Halogenación fotoquímica. Halogenuros de alquilo. Estructura. Nomenclatura. Preparación de derivados halogenados de hidrocarburos. Usos y propiedades químicas. Estructura y derivados organominerales de litio, magnesio y cobre. Reactivos de Grignard. Carbaniones Alquenos. Estructura. Nomenclatura. Isomería. Método de obtención. Propiedades físicas y químicas de alquenos. Reacciones de adición a doble enlace. La regla de Markonikov. Hidrogenación. Polimerización de alquenos. Alquinos. Estructura. Nomenclatura. Métodos de obtención de alquinos. Propiedades físicas y químicas. Reacciones de adición a triple enlace. Acidez de los hidrógenos acetilénicos.

Tema 4: Teoría de la Resonancia y Teoría de los orbitales moleculares aplicada a sistemas conjugados. Teoría de la Resonancia. Postulados y condiciones. Formas canónicas o contribuyentes. Energía de Resonancia. Sistemas conjugados insaturados. Sistemas alilícos: cationes, aniones y radicales libres. Descripción por teoría de la resonancia y por orbitales moleculares. Dienos y polienos. Dienos conjugados. Estructura y estabilidad. Reacciones de adición 1,2- y 1,4-. Reacciones de Diels Alder.

Tema 5: Isomería Distintos tipos. Isomería plana y estructural. Tipos de isomería plana: isómeros de cadena; de posición; de función. Isomería espacial o estereoisomería. Isómeros cis- y trans-. Propiedades. Estereoisomería en compuestos cíclicos. Isomería óptica. Quiralidad. Poder rotatorio. Actividad óptica y enantiómeros. Regla de secuencias para especificar la configuración. Racematos. Compuestos con más de un centro quiral. Diastereómeros. Estereoquímica de alcanos y cicloalcanos. Análisis conformacional. Rotaciones alrededor de enlaces simples carbono-carbono. Conformaciones de compuestos alifáticos: etano; propano; butano y otras moléculas. Tensión estérica. Conformación de cicloalcanos: ciclopropano, ciclobutano, ciclopentano y ciclohexano. Tensión torsional. Repulsiones de Van der Waals. Conformaciones de ciclohexanos disustituidos. Estereoquímica y quiralidad en cicloalcanos sustituidos.

Tema 6: Mecanismos de reacción. Clasificación de las reacciones. Reacciones homolíticas y heterolíticas. Reactivos nucleofílicos y electrofílicos. Sustitución nucleófila en carbono saturado. Sustituciones unimoleculares (SN1) y bimoleculares (SN2). Mecanismos. Reactividad. Estereoquímica de las reacciones de sustitución. Reacciones de eliminación. Eliminaciones unimoleculares (E1) y bimoleculares (E2). Mecanismos. Reactividad, orientación y estereoquímica de las reacciones de eliminación. Competencia entre sustitución y eliminación. Reacciones de Adición electrofílica a doble y triple enlace (AdE). Mecanismos. Estereoquímica de las reacciones de adición.

Tema 7: Benceno y la química aromática. El benceno: estructura, carácter aromático, resonancia. Descripción de benceno según teoría de orbitales moleculares. Regla de Huckel. Aromaticidad y compuestos aromáticos. Diversos tipos. Iones aromáticos. Reacciones de benceno y homólogos. Sustitución aromática electrofílica. Mecanismo general. Halogenación, nitración, sulfonación, alquilación y acilación. Factores que influyen en la velocidad y orientación. Efectos de los sustituyentes: reactividad y orientación. Aditividad de los efectos. Sustitución Nucleófila Aromática. Mecanismos de adición-eliminación y de eliminación-adición con formación de bencino como intermedio

Tema 8: Hidrocarburos bencénicos y derivados. Derivados halogenados, sulfonados, nitrados. Alquilbencenos. Oxidación de los compuestos aromáticos. Oxidación y halogenación de cadenas laterales de alquilbencenos. Carbocationes y radicales bencílicos. Hidrocarburos aromáticos policíclicos. Hidrocarburos de núcleos no condensados: Bifenilo y derivados. Fenilmetanos. Radical trifenilmetilo. Hidrocarburos con núcleos condensados: Naftaleno, antraceno y fenantreno. Estructura, propiedades y reacciones. Hidrocarburos policíclicos carcinogénicos.

Tema 9: Alcoholes, Tioles, Eteres y Fenoles. Estructura. Nomenclatura. Isomería. Propiedades de los alcoholes. Acidez y basicidad. Preparación de alcoholes: Hidratación de alquenos: hidroboración y oximercuración. Dioles. Obtención de alcoholes por reducción de compuestos carbonílicos: aldehidos, cetonas, ésteres, ácidos carboxílicos y reactivos de Grignard. Reacciones de los alcoholes: deshidratación, oxidación, conversión de haluros de alquilo y tosilatos. Tioles (mercaptanos). Estructura, obtención y propiedades. Eteres. Nomenclatura. Estructura y propiedades. Obtención y reacciones de los éteres. Fenoles. Estructura, propiedades físicas. Métodos de preparación y síntesis. Acidez. Reacciones de sustitución electrófila aromática. Derivados alquilados. Acidos y esteres fenólicos. Quinonas. Benzoquinonas. Métodos de preparación y síntesis. Reacciones de óxido-reducción.

Tema 10: Aldehidos y Cetonas. Naturaleza de grupo carbonilo. Estructura. Propiedades físicas. Nomenclatura. Preparación de aldehidos y cetonas. Propiedades químicas. Reacciones de adición nucleófila a grupo carbonilo. Mecanismo general. Estereoquímica. Formación de acetales y cetales. Adición nucleófila de reactivos organometálicos. Adición de ácido cianhídrico; reducción con hidruros metálicos. Reacción con aminas: formación de iminas. Tautomería ceto-enólica. Enolización: iones enolatos, reacciones de condensación aldólica. Reacción de Cannizzaro. Oxidación de aldehidos y cetonas.

Programa de Exámen

Bolilla 1

Tema 1: Estructura electrónica y propiedades.

Bolilla 2.

Tema 2: Grupos funcionales.

Bolilla 3

Tema 3: Hidrocarburos y derivados.

Bolilla 4

Tema 4: Teoría de la Resonancia y Teoría de los orbitales moleculares aplicada a sistemas conjugados.

Bolilla 5

Tema 5: Isomería.

Bolilla 6

Tema 6: Mecanismos de reacción.

Bolilla 7

Tema 7: Benceno y la química aromática.

Bolilla 8

Tema 8: Hidrocarburos bencénicos y derivados

Bolilla 9

Tema 9: Alcoholes, Tioles, Eteres y Fenoles.

Bolilla 10

Tema 10: Aldehidos y Cetonas.

VII - Plan de Trabajos Prácticos

TRABAJOS PRACTICOS DE AULA

- Nomenclatura
- Resolución de ejercicios y problemas.

TRABAJOS PRACTICOS DE LABORATORIO

- Destilación fraccionada de una muestra de vino y determinación de su contenido de alcohol etílico.
- Separación e identificación cromatográfica de ácido benzoico, ácido cítrico y ácido ascórbico de jugos de frutas comerciales. Hidrocarburos. Obtención de acetileno. Propiedades y reacciones.
- Hidrocarburos bencénicos. Obtención de benzoato de metilo. Estudio de su comportamiento en cromatografía de gases.
- Fenoles. Propiedades y reacciones.
- Aldehidos y Cetonas. Propiedades y reacciones.

VIII - Regimen de Aprobación

Para la aprobación de asingatura es necesario aprobar el régimen de trabajos teóricos-prácticos, de laboratorio y de un mínimo del 80 % de asistencia a las clases de TP y Laboratorio. También es necesario la aprobación de tres examinaciones parciales con su respectivo régimen de recuperaciones. Donde se complementarán las recuperaciones extraordinarias para las personas que trabajan y madres.

IX - Bibliografía Básica

- [1] OBRAS DE CARACTER TEORICO
- [2] McMurry J. Química Orgánica. Ed. Thompson. 5ta Ed.
- [3] Ege Seyhan N. Química Orgánica. Tomo 1 y 2. Ed. Reverte. 3ra. Ed.
- [4] Vollhardt K. P. C. y Shore N. E. Química Orgánica. Ed. Omega. 3ra Ed.
- [5] Morrison y Boyd. Química Orgánica. Ed. Fondo Educativo Interamericano. 4ta Ed.
- [6] J. C. Vega de K. Química Orgánica para Estudiantes de Ingeniería. Ed. Alfaomega. 2da Ed.
- [7] Solomons T. W. Química Orgánica. Ed. J. Wiley. 3ra. Ed.
- [8] Streitwieser y Heathcock. Química Orgánica. Ed. J Wiley.
- [9] Allinger, Cava, de Jongh, Level y Stevens. Química Orgánica. Vol 1 y 2. Ed. Reverte.
- [10] Carey F., Sundberg R. Advanced Organic Chemistry. Vol. A y B. Ed. Plenum Press N.Y.
- [11] Weisermel K. y Arpe H.J. Química Orgánica Industrial. Ed. Reverte.
- [12] Groggins P. Unit Poccess in Organic Chemistry. Ed. McGraw Hill.
- [13] Ingold C. Structure and Mechanism in Organic Chemistry. Ed. Cornell University Press.
- [14] Perez y Osorio. Mecanismos de las Reacciones Orgánicas. Ed. Alhambra.
- [15] Baker J. Electronic Theories of Organic Chemistry. Ed. Oxford University Press.
- [16] Breslow R. Organic Reaction Mechanism in Organic Chemistry. Ed. Longmans.
- [17] Bianca y Tchoubar. Mecanismos de Reacción en Química Orgánica. Ed. Limusa.
- [18] OBRAS DE CARACTER PRACTICO
- [19] Mann F.G., Saundres B.C. Practical Organic Chemistry. Ed. Lpngman.
- [20] Wertheim E. A Laboraty Guide for Organic Chemistry. Ed. Blakiston.
- [21] Dupont-Durst H., Gokel G.W. Experimental Organic Chemistry. Ed. McGraw Hill.
- [22] Fieser L. Experimentos de Química Orgánica. Ed. Reverte.
- [23] Renfrow y Hawkins. Organic Chemistry Laboratory Operations. Ed. McMillan.
- [24] Shriner, Fuson y Curtin. Identificacion Sistemática de Compuestos Orgánicos. Ed. Limusa.
- [25] Gatterman y Wieland. Prácticas de Química Orgánica. Ed. Marin.
- [26] Vogel A. Practical Organic Chemistry. Ed. Lohgmans.

XI - Resumen de Objetivos	
(Ver Objetivos)	
XII - Resumen del Program	a
Estructura electrónica y propiedade	es. Hidrocarburos. Estructuras y propiedades físicas. Concepto y teoría de la Resonancia.
Halogenuros de alquilo. Isomería (1	° parte). Isomería (2° parte). Mecanismos de reacción. Benceno y la química aromática.
Sustitución Nucleófila Aromática. A	Alcoholes, Tioles, Eteres y Fenoles. Aldehidos y Cetonas.
XIII - Imprevistos	
ELEVA	ACIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
Firma:	

[27] - Cheronis. Macro y Semimicro Métodos en Química Orgánica. Ed. Marin.

X - Bibliografia Complementaria

Aclaración:

Fecha: