

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico-Matemáticas y Naturales Departamento: Geologia Area: Geologia

(Programa del año 2006) (Programa en trámite de aprobación) (Presentado el 08/08/2006 17:07:40)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
GEOLOGIA ESTRUCTURAL	LIC. CS. GEOL.	022/02	2	2c

II - Equipo Docente

Docente	Función	Cargo	Dedicación
COSTA, CARLOS HORACIO	Prof. Responsable	P.TIT EXC	40 Hs
CISNEROS, HECTOR AMERICO	Responsable de Práctico	JTP EXC	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	Hs	Hs	Hs	Hs

Tipificación	Periodo	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
		•	

IV - Fundamentación

Proveer al alumno conocimientos para reconocer las deformaciones de los materiales e la corteza terrestre

V - Objetivos

Lograr que el alumno pueda reconocer, analizar e interpretar los aspectos estructurales y tectónicos de las deformaciones corticales.

VI - Contenidos

MODULO I: EL INTERIOR DE NUESTRO PLANETA Y ASPECTOS TEORICOS DE LA DEFORMACION Objetivos:

. Proveer una visión global de los procesos deformacionales. Visualizar las deformaciones de la corteza terrestre como consecuencia de la dinámica del manto y núcleo. Conocer los aspectos que gobiernan el comportamiento mecánico de los materiales y determinan el desarrollo de diferentes estructuras.

TEMA 1

Introducción: Definiciones, objetivos, métodos de estudio, relaciones con otras disciplinas, aplicaciones.

TEMA 2

Caracterización geológica y geofísica del interior del planeta. Concepto de litosfera, astenósfera y mesósfera. La corteza terrestre. Tipos corticales y sus características. Zonas estables y móviles. Deriva continental . Diferentes tipos de evidencias para las reconstrucciones continentales. Nociones de paleomagnetismo. Expansión del fondo oceánico. Inversiones del campo magnético terrestre. Tectónica de placas. Tipos de bordes de placas. Fallas transformantes.

TEMA 3

Aspectos teóricos de la deformación: Conceptos de fuerza, esfuerzo y deformación. Representaciones gráficas. Tipos de deformaciones (clasificación descriptiva). Propiedades reológicas de cuerpos ideales. Etapas de la deformación. Factores que influencian el comportamiento de los materiales. Conceptos de cizalla simple y cizalla pura. Mecanismos de la deformación contínua. Mecanismos de la deformación discontínua. Criterios de Coulomb, Griffith y Bott. Círculo de Mohr.

MODULO II: ESTRUCTURAS PRINCIPALES

OBJETIVOS

Reconocer, analizar e interpretar los principales tipos de deformaciones de la corteza terrestre. Mostrar las principales aplicaciones de los conceptos de geología estructural en actividades de prospección y resolución de problemas en otras disciplinas.

TEMA 4

Estructuras primarias. Distinción entre techo y base de estratos. Discordancias: Clasificación. Términos afines. Criterios para el reconocimiento de discordancias.

TEMA 5

Pliegues: Terminología de los elementos de un pliegue. Clasificación descriptiva de pliegues según simetría, actitud del plano y el eje, curvatura de la charnela, morfología, espesor de los estratos, posición de las isogonas, dimensiones. Reconocimiento de pliegues a escala macro y mesoscópica. Mecanismos genéticos del plegamiento: Pliegues generados por flexodeslizamiento, flujo flexural, aplanamiento, deslizamiento pasivo, flujo y mecanismos combinados. Importancia de los pliegues en tareas de prospección.

TEMA 6

Diaclasas. Clasificación descriptiva según: forma, tamaño, importancia relativa, orientación respecto a las estructuras mayores y rasgos superficiales. Clasificación genética: Diaclasas de contracción, tensión y cizalla. Importancia de las diaclasas en problemas geológicos.

TEMA 7

Fallas. Definiciones. Terminología de los elementos de una falla. Clasificación descriptiva de fallas según rake del desplazamiento neto, posición respecto a los estratos adyacentes, ángulo de inclinación del plano, diseño del plano. Mecánica del fallamiento. Clasificación genética. Fallas de empuje, gravitacionales, transcurrentes y transformantes. Ley de Anderson. Reconocimiento de fallas. Evidencias a escala macro y mesoscópica. Distinción entre fallas y discordancias. Determinación del sentido de desplazamiento. Importancia de las fallas en geología aplicada

MODULO III: ASOCIACIONES ESTRUCTURALES Y PROCESOS FORMADORES DE MONTAÑAS.

OBJETIVOS: Mostrar las vinculaciones entre las principales estructuras en diferentes ambientes tectónicos. Conocer los principales procesos orogénicos en el marco de la tectónica de placas.

TEMA 8

Tectónica extensional. Geometría de las principales fallas normales. Estructuras características. "Core complexes". Extensión continental y oceánica. Ejemplos argentinos.

TEMA 9

Tectónica compresiva. Tectónica "thin skinned", sistemas de fajas plegadas y falladas. Estructuras características. Distintos tipos de pliegues asociados a fallas. Tectónica "thick skinned". Tectónica compresiva de bloques. Ejemplos argentinos. TEMA 10

Tectónica transcurrente. Mecánica del fallamiento transcurrente. Transcurrencia paralela, transtensión y transtensión. Morfologías características. Reconocimiento de fallas transcurrentes. Ejemplos argentinos

TEMA 11

Estructuras de inversión tectónica. Criterios para su identificación. Elementos descriptivos. Inversión tectónica positiva y negativa. Estructuras resultantes. Orígenes de la inversión tectónica. Ejemplos argentinos.

TEMA 12

Otras asociaciones estructurales. Estructuras diapíricas y domos salinos. Tectónica gravitacional. Zonas de cizalla.

TEMA 13

Contextos orogénicos en el marco de la tectónica de placas. Orógenos tipo andino, himalayo y arco de islas.

VII - Plan de Trabajos Prácticos

Tema 1: Orientación de planos. Rumbo y buzamiento real y aparente. Distintas formas de obtener el rumbo y buzamiento de un plano. Interacción entre planos y topografía. Regla de la "V".

- Tema 2: Ejercitación del manejo de la Brújula en gabinete y trabajo de campo
- Tema 3: Técnicas geométricas auxiliares. Espesor y profundidad de estratos. Problema de los tres puntos. Reconstrucción del diseño de afloramiento de estratos.
- Tema 4: Reconocimiento de un pliegue en perfil y en planta. Construcción de perfiles de pliegues. Pliegues y Topografía.
- Tema 5 : Reconocimiento y análisis de pliegues en imágenes aéreas.
- Tema 6: Análisis de pliegues en muestras de mano.
- Tema 7: Reconocimiento de fallas en perfil y en planta. Relaciones entre el fallamiento y la morfología pre y post erosivas. Resolución de problemas geométricos.
- Tema 8: Reconocimiento y análisis de fracturas en imágenes aéreas.
- Tema 9: Análisis de planos de falla en muestras de mano, medición de estrías y determinación del sentido de movimiento.
- Tema 10: Tratamiento gráfico y estadístico de datos. Aplicaciones de la proyección estereográfica. Tratamiento de datos recopilados en trabajo de campo. Análisis cinemático de fallas por computadora.
- Tema 11: Mapas estructurales e isopáquicos.
- Tema 12: Perfiles balanceados

VIII - Regimen de Aprobación

- 1. El curso tendrá un crédito semanal de nueve (9) horas, distribuidas en tres (3) horas de teoría y seis (6) horas de trabajos prácticos, sin incluir a los viajes de campaña. En algunas ocasiones, los trabajos prácticos podrán desarrollarse conjuntamente con las clases teóricas.
- 2. Para desarrollar cada práctico y para poder asistir a los mismos, el alumno deberá aprobar previamente un cuestionario referente al tema. Los cuestionarios desaprobados implicarán una inasistencia, debiendo recuperarse su contenido.
- 3. Las inasistencias por enfermedad a parciales, prácticos o viajes deberán ser justificadas con un certificado del Departamento de Salud (DOSPU), de lo contrario será computada como tal.
- 4. La evaluación del curso se efectuará a través de dos (2) exámenes parciales teórico-prácticos. Para rendir cada uno de éstos, el alumno tiene que haber desarrollado por lo menos el 80 % de los trabajos prácticos y debe haber aprobado el 100% de los mismos. Por dicha razón, los alumnos que hayan registrado ausencias, deberán efectuar la recuperación de los prácticos antes de rendir el examen parcial.
- 5. Los dos parciales podrán ser recuperados en una (1) oportunidad cada uno, no existiendo recuperación general.
- 6. Para cualquier regularización de la materia, el alumno deberá tener aprobados los dos exámenes parciales, la carpeta de trabajos prácticos y los trabajos asignados durante los viajes de campaña.
- 7. La asignatura cuenta con un régimen de Promoción. Para acceder al mismo, los alumnos deberán aprobar cada parcial con una nota de siete (7) o superior y presentar un examen oral integrador dentro de la semana de aprobado el segundo parcial, cuyas características se anunciarán con anticipación. Para acceder al régimen de promoción, no se podrán desaprobar cuestionarios en los trabajos prácticos.
- 8. Los alumnos que acrediten actividades laborales podrán encuadrarse dentro del contenido de la Resolución N 654/86.
- 9. El examen final para los alumnos regulares, contará de una prueba oral (excepcionalmente podrá realizarse en forma escrita) sobre los temas del programa teórico, pudiéndose incluir también problemas desarrollados en los trabajos prácticos.
- 10. El examen libre constará de una prueba oral y escrita, referente al temario de trabajos prácticos, cuya aprobación permitirá al alumno acceder a un examen oral, de iguales características que el exigido a los alumnos regulares.

IX - Bibliografía Básica

- [1] DAVIS, G. (1984). Structural geology of rocks. J. Wiley. N.Y., 530 p.
- [2] HATCHER, R. (1990) Structural geology, 531p. Merril
- [3] HILLS, E. (1977). Elementos de Geología Estructural. Ariel, Barcelona, 579 p.
- [4] HOBBS, B. et.al. (1981). Geología estructural. Omega. Barcelona, 518 p.
- [5] JAROSZEWSKI, W. (1984). Fault and fold tectonics. Ellis, Horwood, 565 p.
- [6] MATTAUER, M. (1976). Las deformaciones de los materiales de la corteza terrestre. Omega, Barcelona, 524 p.
- [7] PARK, R. (1983). Foundations of structural geology. Blackie, London, 135 p.
- [8] LISLE, R. (1985). Geological structures and maps. Pergamon.
- [9] RAMSAY, J. (1977). Plegamiento y fracturación de rocas. Blume, Madrid, 568 p.
- [10] SPENCER, E. (1977). Introduction to the structure of the earth. Mc.Graw, N. York, 640 p.
- [11] SUPPE, J. (1985). Principles of structural geology. Prentice Hall, N.J., 537 p.

- [12] TWISS, R. y MOORE, P. (1992) Structural geology. Freeman
- [13] UEMURA, Ty MIZUTANI, S. (1984). Geological structures. J. Wiley, 309 p.
- [14] VAN DER PLUIJM, B. y MARSHAK, S., (1997) Earth Structure. McGraw-Hill, 495p.

X - Bibliografia Complementaria

- [1] BLES, B. y FEUGA, T. (1984). La fracturation des roches. Masson, Paris.
- [2] DE PAOR, D. (1996) Structural Geology and personal computers. Pergamon, 527p, Oxford.
- [3] DICKINSON, W. (1983). Evolución de la tectónica de placas de cuencas sedimentarias- Comunicación YPF. 43 p.
- [4] COX, A. y HART, B. (1986) Plate tectonics, How it works? 392p., Blackwell.
- [5] MIYASHIRO, K., AKI, K. y SENGOR, C.(1979). Orogeny. Wiley, N. York.
- [6] HANCOCK, P. Ed (1994) Continental deformation, 421p. Pergamon Press, Oxford
- [7] JAIN, V. (1980). Geotectónica general, partes I y II. Mir. Moscú
- [8] KEAREY, P. y VINE, F., (1990) Global tectonics. 302p. Blackwell.
- [9] MOORES, N. Y TWISS, E. (1994) Tectonics. Freeman.
- [10] NICOLAS, (1986). Principles of rock deformation. Reidel, 235 p.
- [11] OLLIER, C. (1981). Tectonics and landforms. Longman, London, 324 p.
- [12] RAMSAY, J. and M. HUBBER (1983). The techniques of structural geology. vol. I Ac. Press, 307 p.
- [13] RAMSAY, J. and M. HUBBER (1987). The techniques of moderm structural geology, Vol II. Ac. Press.
- [14] ROBERTS, J. (1982). Introduction to geological maps and structures. Pergamon, Oxford, 332 p.
- [15] TUZO WILSON, J. Ed (1977). Deriva continental y tectónica de placas. Selecc. Scient. Amer. Blume, Madrid, 231 p.
- [16] TURNER, F. and L. WEISS (1963). Structural analysis of metamorphic tectonites. Mc. Graw, N. York, 545 p.
- [17] TWIDALE, C. (1971). Structural landforms. MIT Press. London, Vol. N 5
- [18] WEISS, L. (1972). The minor structures of deformed rocks, a photographic atlas. Springer, Berlín, 431 p.
- [19] WILSON, G. (1978). el significado tectónico de las estructuras menores para el geológo de campo. Omega, Barcelona, 107 p..
- [20] BIBLIOGRAFIA PARA TRABAJOS PRACTICOS
- [21] BILLINGS, M (1972). Geología Estructural. Eudeba, Bs. As. 564p.
- [22] CRIADO ROQUE, P., C. MOMBRU y V. RAMOS (1981). Estructura y evolución tectónica, en: Relatorio VIII Congreso Geol. Arg., Irigoyen De., p. 155-192, San Luis.
- [23] MARTINEZ ALVAREZ, J. (1981). Mapas Geológicos: Explicación e interpretación. Paraninfo, Madrid, 259 p.
- [24] --- (1981). Geología cartográfica. Paraninfo, Madrid, 271 p.
- [25] PHILLIPS, F. (1975). La aplicación de la Proyección Estereográfica en geología estructural, Blume, Madrid, 132 p.
- [26] RAGAN, D. (1980). Geología estructural: introducción a las técnicas geométricas. Omega, Barcelona, 207 p.
- [27] ROBERTS, J. (1981). Introduction to geological maps and structures. Pergamon, Oxford, 332 p.
- [28] SIMPSON, B. (1986). Geological maps. Pergamon Oxford, 112 p. (**)

XI - Resumen de Objetivos

Lograr que el alumno pueda reconocer, analizar e interpretar los aspectos estructurales y tectónicos de las deformaciones corticales.

XII - Resumen del Programa

Nociones generales de Deriva Continental y Tectónica de Placas y características básicas de la corteza terrestre. Análisis descriptivo y genético de deformaciones frágiles y dúctiles.

Asociaciones estructurales en contextos extensionales, compresivos y transcurrentes. Principales mecanismos orogénicos vinculados a los diferentes contextos de placas tectónicas

XIII - Imprevistos

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA	
	Profesor Responsable
Firma:	
Aclaración:	
Fecha:	