

# Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico-Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2006) (Programa en trámite de aprobación) (Presentado el 31/10/2006 12:37:48)

**Area: Matematicas** 

#### I - Oferta Académica

| Materia                   | Carrera            | Plan  | Año | Período |
|---------------------------|--------------------|-------|-----|---------|
| HISTORIA DE LA MATEMATICA | P.T.C.E.B.E.P.M.   | 14/05 | 4   | 2c      |
| HISTORIA DE LA MATEMATICA | PROF.UNIV. EN MAT. | 13/05 | 4   | 2c      |

# II - Equipo Docente

| Docente | Función | Cargo | Dedicación |
|---------|---------|-------|------------|

### III - Características del Curso

| Credito Horario Semanal |          |                   |                                       |       |
|-------------------------|----------|-------------------|---------------------------------------|-------|
| Teórico/Práctico        | Teóricas | Prácticas de Aula | Práct. de lab/ camp/ Resid/ PIP, etc. | Total |
| 10 Hs                   | Hs       | Hs                | Hs                                    | 10 Hs |

| Tipificación                     | Periodo        |
|----------------------------------|----------------|
| C - Teoria con prácticas de aula | 2 Cuatrimestre |

| Duración   |            |                     |                   |
|------------|------------|---------------------|-------------------|
| Desde      | Hasta      | Cantidad de Semanas | Cantidad de Horas |
| 07/08/2006 | 10/11/2006 | 14                  | 140               |

### IV - Fundamentación

El conocimiento de la epistemología y la historia de la ciencia en la cual desempeñamos nuestras tareas docentes resultan fundamentales para una mejor perfomance de nuestras actividades docentes. Con ello se logra que el alumno se prepare para poder situar en contextos las distintos momentos en que se hicieron avances matemáticos, reconociendo el contexto histórico y las dificultades que se enfrentaban quienes lograron estos nuevos descubrimientos.

El conocimiento de las distintas escuelas matemáticas y las biografías de los principales matemáticos permite conocer la forma en que evoluciono el pensamiento matemático.

# V - Objetivos

- Estudiar las distintas escuelas matemáticas y las biografías de los principales matemáticos.
- Revisar conocimientos matemáticos correspondientes a varias asignaturas. Esto se lleva a cabo por medio de exposiciones que hacen los alumnos sobre tópicos seleccionados.
- Adquirir una formación sobre el desarrollo de las distintas corrientes de pensamiento matemático.

### VI - Contenidos

# BOLILLA 1.- LOS ORÍGENES PRIMITIVOS. EGIPTO Y MESOPOTAMIA

El concepto de número. Bases de numeración primitivas. El lenguaje numérico y los orígenes de la numeración. El origen de la geometría. El sistema egipcio de notación jeroglífica. El papiro de Ahmes. Las fracciones unitarias. Las operaciones aritméticas. Problemas algebraicos y geométricos. El papiro de Moscú. La numeración posicional babilónica. Las fracciones sexagesimales. Las operaciones fundamentales. El álgebra y la geometría babilónica. Las ecuaciones cuadráticas. Ecuaciones cúbicas. Las ternas pitagóricas. Áreas de polígonos.

### **BOLILLA 2.- LA MATEMÁTICA GRIEGA**

Los orígenes del mundo griego. Tales de Mileto. Pitágoras de Samos. El pentagrama pitagórico. El misticismo numérico. Los números figurados. La teoría de proporciones. Sistemas de numeración. Aritmética y logística. Los tres problemas clásicos. La cuadratura de las lúnulas. Las proporciones continuas. Los inconmensurables. La sección áurea. Las paradojas de Zenón. El razonamiento deductivo. El álgebra geométrica. Las siete artes liberales. Sócrates. Los sólidos platónicos. La aritmética y la geometría platónicas. Los orígenes del análisis. Euxodo de Cnido. El método de exhausción. La astronomía matemática. Aristóteles. Euclides. Breve análisis de los elementos. Arquímedes. Breve análisis de su obra. Apolonio. Breve análisis de las cónicas. La trigonometría primitiva. La astronomía de Ptolomeo. Diofanto y Pappus. Breve análisis de su obra.

#### BOLILLA 3.- CHINA - INDIA - ARABIA - AMERICA PRECOLOMBINA

Análisis de: los distintos sistemas de numeración, las operaciones aritméticas, los ábacos y otros instrumentos de cálculo, el álgebra, la geometría y la trigonometría de civilizaciones no occidentales.

#### **BOLILLA 4.- LA EDAD MEDIA**

La matemática bizantina. La época oscura. El siglo de las traducciones. La propagación de los números hindu-arábigos. El liber abaci. La sucesión de Fibonacci. Una resolución de una ecuación cúbica. Teoría de números y geometría. El saber del Siglo XIII. La cinemática medieval. Nicole Oresme. Las series numéricas. El ocaso del saber medieval

### **BOLILLA 5.- EL RENACIMIENTO**

La época de los humanistas. La aplicación del álgebra a la geometría. Leonardo da Vinci. Las álgebras germánicas. Resolución de la ecuación cúbica. La resolución de la ecuación cuártica. Las cúbicas irreducibles y los números complejos. Nicolás Copérnico. El Algebra de Bombelli. La teoría de la perspectiva. La cartografía.

# BOLILLA 6.- PRELUDIO A LA MATEMÁTICA MODERNA

Francois Viète. El concepto de parámetro. El arte analítica. Las relaciones entre las raíces y los coeficientes en una ecuación. Trigonometría. La resolución trigonométrica de ecuaciones. La invención de los logaritmos. La matemática aplicada y las fracciones decimales. La notación algebraica. El análisis infinitesimal. Las dos nuevas ciencias de Galileo. Galileo y el infinito.

### **BOLILLA 7.- LA ÉPOCA DE FERMAT Y DESCARTES**

Los matemáticos más importantes de la época. "El Discurso del Método". La invención de la geometría analítica. El álgebra geométrica. La clasificación de curvas. Rectificación de curvas. La identificación de cónicas. Normales y tangentes. Las concepciones geométricas de Descartes. Los lugares geométricos de Fermat. La geometría analítica multidimensional. Las diferenciaciones de Fermat. Las integraciones de Fermat. La teoría de números. Teoremas de Fermat. La geometría proyectiva. El cálculo de probabilidades. La cicloide.

### **BOLILLA 8.- NEWTON Y LEIBNIZ**

La obra temprana de Newton. El teorema binomial. Las series infinitas. El Método de Fluxiones. Los principia. Leibniz y el triángulo armónico. El triángulo diferencial y las series infinitas. El cálculo diferencial. Simbolismo, determinantes y números imaginarios. El álgebra de la lógica. Teoremas sobre cónicas. La óptica y la teoría de curvas. Las coordenadas polares y otros tipos de coordenadas.

### BOLILLA 9.- LA ERA DE LOS BERNOULLI

La familia Bernoulli. La espiral logarítmica. Probabilidades y series. La Regla de L'Hospital. El cálculo exponencial. Los logaritmos de los números negativos. El teorema de De Moivre. La serie de Taylor. La controversia en torno a El Análisis. La regla de Cramer. La geometría analítica tridimensional. La matemática en Italia. El postulado de las paralelas. Las series divergentes.

### **BOLILLA 10.- LA ÉPOCA DE EULER**

La vida de Euler. La fundamentación del análisis. Series convergentes y divergentes. Las identidades de Euler. D'Alembert y la idea de límite. La teoría de ecuaciones diferenciales. La teoría de probabilidades. La teoría de números. Los libros de texto. La geometría sintética. La geometría analítica tridimensional.

### BOLILLA 11.- LOS MATEMÁTICOS DE LA REVOLUCIÓN FRANCESA

Los matemáticos más importantes. Lagrange y la teoría de determinantes. El comité de Pesos y Medidas. Condorcet y la

educación. La geometría descriptiva y analítica. Los libros de texto. Las integrales elípticas. La teoría de números. La teoría de funciones. El cálculo de variaciones. Los multiplicadores de Lagrange. Laplace y la teoría de probabilidades.

### **BOLILLA 12.- EL PERIODO DE GAUSS Y CAUCHY**

Los primeros descubrimientos de Gauss. La representación gráfica de los números complejos. El teorema fundamental del álgebra. El álgebra de las congruencias. La ley de reciprocidad y la frecuencia de los números primos. Los polígonos regulares constructibles. Funciones elípticas. La teoría de determinantes. La teoría de funciones de variable compleja. Los fundamentos del cálculo infinitesimal. Los criterios de convergencia. La geometría. La matemática aplicada.

### BOLILLA 13.- LA ÉPOCA HEROICA DE LA GEOMETRÍA

La geometría de la inversión. La geometría proyectiva. Las coordenadas homogéneas. Coordenadas de rectas y dualidad. El renacimiento de la matemática inglesa. La geometría en Alemania. La geometría no euclídea. La geometría riemanniana. Espacios de dimensión superior. El programa de Erlangen. El modelo hiperbólico de Klein.

### **BOLILLA 14.- LA ARITMETIZACION DEL ANÁLISIS**

La teoría de series de Fourier. La teoría analítica de números. Los números trascendentes. La inquietud acerca de los fundamentos del análisis. El teorema de Bolzano-Weierstrass. La definición de número real. El análisis de Weierstrass. El concepto de "cortadura" de Dedekind. El concepto de límite. La idea de "potencia" de un conjunto infinito. Propiedades de los conjuntos infinitos. La aritmética transfinita

### BOLILLA 15.- LA APARICIÓN DEL ALGEBRA ABSTRACTA

La Edad de Oro de la matemática. La matemática en Cambridge. Los cuaterniones. La teoría de matrices. La teoría de invariantes de formas cuadráticas. Algebra de Boole. La teoría de Galois. La teoría de cuerpos. La definición de número cardinal. Los axiomas de Peano.

### **BOLILLA 16.- ASPECTOS DEL SIGLO VEINTE**

La teoría de funciones de Poincaré. Matemática aplicada y topología. Los problemas de Hilbert. El teorema de Gödel. Los fundamentos de la geometría. La teoría de espacios abstractos. Los fundamentos de la matemática. Intuicionismo, formalismo y logicismo. Integración y teoría de la medida. La topología conjuntista. La vía de la abstracción creciente en álgebra. La teoría de probabilidades. La aparición de las computadoras. El concepto de estructura matemática. Bourbaki y la "nueva matemática".

# VII - Plan de Trabajos Prácticos

# VIII - Regimen de Aprobación

- \* Regularidad:
- 1) Asistir al menos al 80% de las clases
- 2) Cumplir satisfactoriamente con las exposiciones asignadas.
- 3) Resolver los problemas y contestar las preguntas que se indiquen durante la cursada.
- \* Promoción:
- 4) Aprobar un coloquio integrador global sobre los distintos temas desarrollados en el curso.
- RÉGIMEN DE ALUMNO LIBRE
- 1) Aprobar una monografía sobre un tema asignado por la cátedra.
- 2) Aprobar un examen sobre los distintos temas desarrollados en el curso.

# IX - Bibliografía Básica

- [1] 1.- Boyer, Carl B. Historia de la Matemática. De. Alianza. Madrid 1987.
- [2] 2.- Klein Morris. El Pensamiento Matemático de la Antigüedad a nuestros días. Tomos I, II y III. D

- [3] e. Alianza. 1994.
- [4] 3.- Newman, James. Enciclopedia Sigma. El mundo de las matemáticas. De. Grijalbo. Barcelona. 1976.
- [5] 4.- Matemáticas en el Mundo Moderno. Selecciones de Scientific American. Versión Española: Miguel de Guzman. Editorial Blume. España. 1974.
- [6] 5.- Aleksandrov y Otros. La matemática: su contenido, métodos y significado. Versión Española de Andrés Ruiz Merino. Editorial Alianza. Madrid. 1984.
- [7] 6.- Historical Topics for the Mathematics Classroom. Ed.National Council of Teachers of Mathematics. EE.UU. 1989.
- [8] 7.- Bell E.T. Historia de las Matemáticas. Fondo de Cultura Económica. México 1995.

# X - Bibliografia Complementaria

[1]

# XI - Resumen de Objetivos

Estudiar las distintas escuelas matemáticas y las biografías de los principales matemáticos.

- Revisar conocimientos matemáticos correspondientes a varias asignaturas. Esto se lleva a cabo por medio de exposiciones que hacen los alumnos sobre tópicos seleccionados.
- Adquirir una formación sobre el desarrollo de las distintas corrientes de pensamiento matemático

### XII - Resumen del Programa

- BOLILLA 1.- LOS ORÍGENES PRIMITIVOS. EGIPTO Y MESOPOTAMIA
- BOLILLA 2.- LA MATEMÁTICA GRIEGA
- BOLILLA 3.- CHINA INDIA ARABIA AMERICA PRECOLOMBINA
- **BOLILLA 4.- LA EDAD MEDIA**
- **BOLILLA 5.- EL RENACIMIENTO**
- BOLILLA 6.- PRELUDIO A LA MATEMÁTICA MODERNA
- BOLILLA 7.- LA ÉPOCA DE FERMAT Y DESCARTES
- **BOLILLA 8.- NEWTON Y LEIBNIZ**
- BOLILLA 9.- LA ERA DE LOS BERNOULLI
- BOLILLA 10.- LA ÉPOCA DE EULER
- BOLILLA 11.- LOS MATEMÁTICOS DE LA REVOLUCIÓN FRANCESA
- BOLILLA 12.- EL PERIODO DE GAUSS Y CAUCHY
- BOLILLA 13.- LA ÉPOCA HEROICA DE LA GEOMETRÍA
- BOLILLA 14.- LA ARITMETIZACION DEL ANÁLISIS
- BOLILLA 15.- LA APARICIÓN DEL ALGEBRA ABSTRACTA
- **BOLILLA 16.- ASPECTOS DEL SIGLO VEINTE**

| TTTT          | 1   | r    | • 4    |     |
|---------------|-----|------|--------|-----|
| XIII          | _   | lmnr | evisto | c   |
| <b>/ 1111</b> | - 1 |      | CVISUN | . 7 |

| ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA |                      |  |
|-----------------------------------------|----------------------|--|
|                                         | Profesor Responsable |  |
| Firma:                                  |                      |  |
| Aclaración:                             |                      |  |
| Fecha:                                  |                      |  |