

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico-Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2007) (Programa en trámite de aprobación) (Presentado el 26/03/2007 12:45:17)

Area: Matematicas

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
CALCULO I	LIC.CS.MAT.	012/06	1	2c
CALCULO I	P.T.C.E.B.E.P.M.	14/05	1	2c
CALCULO I	PROF.UNIV. EN MAT.	13/05	1	2c
CALCULO I	LIC. CS. COMP.	006/05	1	2c
CALCULO I	PROF.CS.COMP.	007/05	1	2c
CALCULO I	LIC. EN FISICA	015/06	1	2c
CALCULO I	PROF.EN FISICA	16/06	1	2c
CALCULO I	LIC.CS.TEC.DE MAT.	24/02	1	1c
CALCULO I	TCO.U.REDES.COMP.	011/05	1	2c
CALCULO I	ING. ELECTRONICA	010/05	1	2c
CALCULO I	ING. EN MINERIA	12/98	1	2c

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ALVAREZ, HUGO CESAR	Prof. Responsable	P.TIT EXC	40 Hs
FAVIER, SERGIO JOSE	Prof. Responsable	P.TIT EXC	40 Hs
CIACERA, MARIA	Responsable de Práctico	JTP EXC	40 Hs
GHIBAUDO, MARIA JULIA	Responsable de Práctico	A.1RA SEM	20 Hs
ZAKOWICZ, MARIA ISABEL	Responsable de Práctico	A.1RA EXC	40 Hs
GOMEZ BARROSO, JUAN JOSE	Auxiliar de Práctico	A.2DA SIM	10 Hs
PEPA RISMA, ELIANA BEATRIZ	Auxiliar de Práctico	A.1RA EXC	40 Hs
SOTA, RODRIGO ARIEL	Auxiliar de Práctico	A.1RA SEM	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas (Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
8 Hs	Hs	Hs	Hs	8 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	1 Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
12/03/2007	15/06/2007	14	112

IV - Fundamentación

Varias carreras de la FCFM y N requieren habilidades en modelización de problemas continuos que usan como herramienta matemática fundamental el Cálculo Diferencial e Integral. Estas carreras toman además del Cálculo varios cursos de Algebra, completando una importante formación matemática. El presente curso, que se encuentra en el tramo inicial de esa serie, provee los elementos primarios, tratando de introducirlos junto con las motivaciones que los hacen necesarios (ecuaciones

V - Objetivos

- Adquirir un razonable manejo del álgebra elemental.
- Usar y relacionar cambiando de uno a otro los diversos sistemas de descripción de curvas planas.
- Operar ágilmente con las operaciones de derivación e integración.
- Estudiar funciones. Extremos locales y globales, crecimiento, convexidad, inflexiones. Gráficos.
- Dominar los usos geométricos de la derivada. Rectas y vectores tangentes.
- Comprender la génesis de las funciones trascendentes elementales y su utilidad en la resolución de problemas diferenciales de valores iniciales.
- Comprender la utilidad teórica del teorema del valor medio y sus consecuencias.
- Calcular límites.
- Comprender el problema de aproximación puntual y el orden de contacto de dos curvas.
- Calcular desarrollos de Taylor.
- Comprender los problemas de existencia y unicidad de soluciones de ecuaciones diferenciales.
- Comprender las relaciones de derivadas e integrales.
- Adquirir un razonable manejo de las diversas notaciones existentes para el tratamiento de derivadas e integrales.
- Manejar las aplicaciones prácticas inmediatas de la integral: área, trabajo, longitud de arco.
- (Tentativo) Comprender el problema de aproximación en un intervalo. Calcular polinomios trigonométricos aproximantes (Fourier)

VI - Contenidos

BOLILLA 1: INTRODUCCION

Desigualdades. Valor absoluto, propiedades, Inecuaciones, Funciones; dominio. Funciones potenciales. Gráficas y curvas; coordenadas, líneas rectas, distancia entre dos puntos. Circunferencias. Cambio de origen. Curvas paramétricas. Medida de ángulos en radianes. Equivalencias con el sistema sexagesimal. Definición de las funciones trigonométricas. Funciones de ángulos notables. Gráficas someras de las funciones trigonométricas. Fórmula de la adición. Otras fórmulas trigonométricas; senos y cosenos de ángulos dobles y medios, seno en función de tangente, etc. Relación entre el área de un sector circular, el radio y el arco.

BOLILLA 2: LA DERIVADA

Pendiente de una curva a partir del cociente de Newton con noción intuitiva de límite. Derivada, derivadas laterales, recta tangente y normal, función derivada. Límite: propiedades de linealidad monotomía; comportamiento con productos y cocientes. Funciones continuas. Relación entre continuidad y derivabilidad. Reglas de derivación: derivada de potencias, linealidad, derivada de productos y cocientes. Derivadas de las funciones trigonométricas: Solución del problema de límites de sen x / x y (cos x - 1) / x. Funciones compuestas y regla de la cadena. Derivada de orden superior. Derivación implícita. Razón de cambio: aplicaciones. Vector tangente. Oscilador armónico.

BOLILLA 3: EL TEOREMA DEL VALOR MEDIO

Concepto de extremos locales y globales. Extremos relativizados a un subconjunto del dominio. El teorema de Heine - Borel sobre existencia de extremos de funciones continuas en intervalos cerrados. (Sin demostración). Condición necesaria para la existencia de extremos locales en intervalos de derivabilidad. Puntos críticos. Teoremas de Rolle y del valor medio de Cauchy y de Lagrange. Comportamiento de una función en un intervalo de acuerdo con el signo de su derivada. Unicidad salvo constante de funciones con igual derivada. Desigualdades entre funciones a partir de desigualdades entre sus derivadas.

BOLILLA 4: TRAZADO DE CURVAS

Límites infinitos y en el infinito (asíntotas verticales y horizontales). Trazado de curvas: intersección con los ejes coordenados, puntos críticos, intervalos de crecimiento y de decrecimiento, extremos locales y globales, valores asintóticos. Convexidad: criterio de la segunda derivada.

BOLILLA 5: FUNCIONES INVERSAS

Inyectividad (biunivocidad). Rango de una función. Función inversa. Caracterizaciones equivalentes. Inyectividad de las funciones monótonas. Teorema del valor intermedio de Bolzano (sin demostración); su uso para determinar el rango de funciones continuas. Reglas de derivación de funciones inversas. Las funciones trigonométricas inversas.

BOLILLA 6: LOGARITMO Y EXPONENCIAL

Funciones exponenciales. Propiedades características. . Su derivada. Estudio y trazado de su gráfica. La función exponencial natural. Propiedades. El número e. La función logarítmica natural. Propiedades. Logaritmos en otras bases. Aplicaciones. Ecuación diferencial de los procesos de crecimiento y desintegración.

BOLILLA 7: APROXIMACION PUNTUAL

Cálculo de límites indeterminados: Regla de L'Hospital. Grado de aproximación. Polinomio de Taylor. Fórmula para el resto con la derivada de orden uno más. Cálculo de polinomios de Taylor en diversos puntos. Unicidad del polinomio de Taylor. Cálculos derivados.

BOLILLA 8: INTEGRACION

Integral indefinida. Propiedades. . Técnicas de integración: sustitución e integración por partes. Fracciones simples e integración de funciones racionales. Uso de tablas. Algunas nociones intuitivas sobre la definición de integral definida. Área entre la gráfica de una función y el eje de abscisas. Propiedades de la integral: linealidad, monotonía y aditividad de dominio. Teorema fundamental del cálculo. Regla de barrow y cálculo de integrales inmediatas. Caracterización de la integral por sus propiedades de monotonía y aditividad de dominio. Aplicaciones. Área entre dos curvas Trabajo. Longitud de arco.

VII - Plan de Trabajos Prácticos

Resolución de ejercicios, muchos de ellos los que figuran en la bibliografía principal.

VIII - Regimen de Aprobación

La asistencia es obligatoria, aunque el control de la misma se realice en forma estadística a través del desempeño en los trabajos prácticos, actividades estas que se describen más abajo.

Las actividades evaluables se calificarán en la escala de 0 a 10 y se aprueban con 5 puntos. Toda actividad evaluable cuenta con una instancia de recuperación. Existirán dos tipos de actividades evaluables:

Trabajos prácticos: A lo largo del curso se propondrá al alumno una serie de problemas cuya resolución, a veces en clase (parcialitos) y otras fuera de ella (deberes), se deberá presentar por escrito en el momento indicado (la presentación fuera de término no es aceptada, se considera no aprobado). La aprobación del 75% de los trabajos prácticos constituye el requisito de asistencia

Parciales: Existen dos exámenes escritos compuestos de problemas y ejercicios semejantes a los resueltos en la guía de ejercitación. La recuperación de ambos parciales se efectúa al finalizar el curso.

Cumplido el requisito de asistencia, se obtiene la condición de regular con la aprobación de los dos parciales. La aprobación de la materia se completa con el examen final.

Se consideran libres los alumnos inscriptos que no lograren la regularidad. Ellos podrán presentarse en las fechas de exámenes que prevé la reglamentación. En este caso el examen constará de una parte escrita de resolución de problemas, de carácter eliminatorio, seguida de un oral.

IX - Bibliografía Básica

- [1] Serge Lang. Cálculo, 1 ra. Edición, Fondo Educativo Interamericano S. A... 1990.
- [2] Notas de Cálculo, H. Alvarez, http://bd.unsl.edu.ar

X - Bibliografia Complementaria

- [1] Michael Spivak. Calculus, 2ª. Edición, Reverté, S. A.,. 1992.
- [2] D. Hughes-Hallet, A. M. Gleason et al., Cálculo Aplicado, CECSA, 2000.
- [3] Michael Sullivan, Precálculo, 4ª ed., Prentice Hall.
- [4] G. Thomas & R. Finney, Cálculo con Geometría Analítica, vol. 1, Addison-Wesley Iberoamericana, 1977.
- [5] J. Rey Pastor, P. Pi Calleja y C. A. Trejo, Análisis Matemático, vol. 1, Kapelusz, 1952
- [6] W. Rudin, Principios de Análisis Matemático, Mc. Graw Hill, 1966
- [7] Creighton Buck, Cálculo Superior, Mc. Graw Hill, 1969

XI - Resumen de Objetivos

- Adquirir un razonable manejo del álgebra elemental.
- Usar y relacionar cambiando de uno a otro los diversos sistemas de descripción de curvas planas.
- Operar ágilmente con las operaciones de derivación e integración.
- Estudiar funciones. Extremos locales y globales, crecimiento, convexidad, inflexiones. Gráficos.
- Dominar los usos geométricos de la derivada. Rectas y vectores tangentes.
- Comprender la génesis de las funciones trascendentes elementales y su utilidad en la resolución de problemas diferenciales

de valores iniciales.

- Comprender la utilidad teórica del teorema del valor medio y sus consecuencias.
- · Calcular límites.
- Comprender el problema de aproximación puntual y el orden de contacto de dos curvas.
- Calcular desarrollos de Taylor.
- Comprender los problemas de existencia y unicidad de soluciones de ecuaciones diferenciales.
- Comprender las relaciones de derivadas e integrales.
- Adquirir un razonable manejo de las diversas notaciones existentes para el tratamiento de derivadas e integrales.
- Manejar las aplicaciones prácticas inmediatas de la integral: área, trabajo, longitud de arco.

(Tentativo) Comprender el problema de aproximación en un intervalo. Calcular polinomios trigonométricos aproximantes (Fourier)

XII - Resumen del Programa

BOLILLA 1: INTRODUCCION BOLILLA 2: LA DERIVADA

BOLILLA 3: EL TEOREMA DEL VALOR MEDIO

BOLILLA 4: TRAZADO DE CURVAS BOLILLA 5: FUNCIONES INVERSAS

BOLILLA 6: LOGARITMO Y EXPONENCIAL BOLILLA 7: APROXIMACION PUNTUAL

BOLILLA 8: INTEGRACION

XIII - I	lmprevisto	S
----------	------------	---

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
Profesor Responsable		
Firma:		
Aclaración:		
Fecha:		