

Ministerio de Cultura y Educación Universidad Nacional de San Luis do Ingoniario y Cioncias Economicas y

Facultad de Ingenieria y Ciencias Economicas y Sociales

Departamento: Ciencias Agropecuarias

Area: Recursos Naturales

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Edafología	Ing.Agronómica	011/04	3	1c

(Programa del año 2008)

II - Equipo Docente

Docente	Función	Cargo	Dedicación
BARBOSA, OSVALDO ANDRES	Prof. Responsable	P.ASO EXC	40 Hs
GALARZA, FELIX MIGUEL	Prof. Colaborador	P.ASO EXC	40 Hs
HURTADO PAULA	Auxiliar de Práctico	AD-HONOREM	Hs
LARTIGUE, CECILIA DEL VALLE	Auxiliar de Práctico	JTP EXC	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	3 Hs	Hs	7 Hs

Tipificación	Periodo	
E - Teoria con práct. de aula, laboratorio y campo	1 Cuatrimestre	

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
10/03/2008	20/06/2008	14	98	

IV - Fundamentación

La asignatura Edafología, está dirigida a los estudiantes de tercer año de la carrera de ingeniería agronómica, siendo una materia básica con una fuerte implicancia práctica para la formación general y específica del futuro profesional. El suelo, motivo de estudio de la asignatura, es el sustrato donde se desarrollan todos los procesos vivientes del planeta Tierra. El interés por el conocimiento del suelo, en general a través de sus distintas propiedades, se ha desarrollado paralelamente a los progresos conseguidos en los conocimientos agrícolas. Sin embargo, teniendo en cuenta que muchas propiedades de los suelos no son de directa apreciación sino que requieren la aplicación de algunos procesos de índole analítica y el establecimiento de su correlación con el desarrollo de las plantas, el conocimiento del suelo se ha obtenido con cierto retraso en relación con el de otros factores de crecimiento de los vegetales. La necesidad de producción de alimentos y fibras ante la explosión demográfica del mundo, trajo aparejado un fuerte uso de este recurso no renovable, llevándolo en algunos casos, a situaciones límites y hasta veces irreversibles, producto de su degradación y/o contaminación.

V - Objetivos

- Poner en conocimiento de los alumnos la importancia del estudio de los suelos, tanto en sus propiedades físicas y químicas como en su origen y formación, para un buen mantenimiento de la fertilidad y conservación de este recurso no renovable.
- Capacitar al alumno para analizar y evaluar, el uso y los problemas que tienen los diferentes suelos de la República Argentina.
- Interpretar los diferentes análisis, aprender y manejar las técnicas de un Laboratorio de suelos y aguas, con el fin de realizar un buen diagnóstico de la fertilidad tanto física como química.

- Concientizar en la adecuada utilización de este recurso de manera sustentable evitando el deterioro del medio ambiente.

VI - Contenidos

A.- INTRODUCCION

Tema 1

Pedología y Edafología. Reseña histórica. Suelo: definiciones. Ubicación de la asignatura y relación con otras ciencias. Las rocas. Rocas ígneas, metamórficas y sedimentarias. Clasificación de Gerasimov.

Los minerales primarios. Clasificación: Silicatados, Minerales de sílice y Sales. Características de interés edafológico.

B.- GENESIS DE SUELOS

Tema 2

Procesos de meteorización. Meteorización física: fragmentación y pulverización. Meteorización Química: disolución, hidratación, hidrólisis, carbonatación, oxidación. Meteorización Biológica. Factores que inciden en la meteorización. Síntesis y transformación de los minerales arcillosos. Tipo de meteorización. Meteorización y Lixiviación.

Factores formadores de suelos. Secuencias en la formación del suelo. Material parental: clasificación según los agentes de transporte y ambiente de deposición. Clima: lluvias y temperatura. Relieve: acciones directas e indirectas. Agentes Bióticos: el hombre, los animales y los vegetales. Tiempo: etapas de la evolución del suelo.

Tema 3

Procesos formadores de suelo. Procesos generales (adiciones, transformaciones, traslocaciones y pérdidas). Horizonación. Haploidización. Procesos específicos (Eluviación, Iluviación, Lixiviación, Enriquecimiento, Erosión superficial, Cumulización, Decalcificación, Calcificación, Salinización, Desalinización, Alcalinización, Desalcalinización, Lesivaje, Pedoturbación, Littering, Humificación, Paludización, Maduración, Mineralización, Podzolización, Laterización, Descomposición, Síntesis, Melanización, Leucinización, Pardificación, Gleización).

C.- COMPLEJO DE INTERCAMBIO Y FENOMENOS DE ADSORCION

Tema 4

Complejo de intercambio: componentes orgánicos y minerales. Componentes orgánicos. Origen de las cargas.

Componentes minerales. Arcillas. Estructura básica, capas tetraédricas y octaédricas. Clasificación. Arcillas cristalinas.

Estructura 1:1 (caolinita y haloisita). Estructura 2:1 (montmorillonita, beidelita, illita y vermiculita). Estructura 2:2 (Clorita). Arcillas amorfas (Alófanos). Arcillas intergrado o mezcla. Óxidos. Sales. Origen de las arcillas.

Coloides del suelo. Propiedades. Clasificación. Doble capa eléctrica. Teorías sobre la doble capa eléctrica. Cargas de la partícula. Punto isoeléctrico. Potencial Zeta. Condiciones de floculación. Floculación y estructuración.

Coloides protectores. Importancia de los procesos formadores del suelo.

Tema 5

Intercambio catiónico. Adsorción y Absorción. Fenómenos básicos. Intercambiadores. Características del intercambio. Orígenes de las cargas eléctricas: cargas permanentes y cargas dependientes del pH. Superficie específica y densidad de carga. Formulación matemática del intercambio. Principales formulaciones (Ley de acción de masas, Ecuación de Gapón, etc.). Relación de intensidad y capacidad. Isotermas de adsorción. Valores de Hissink. Métodos de determinación de la CIC. Influencia de diversos factores en la CIC. Naturaleza de os iones intercambiadores. Carga. Diámetro. Energía de hidratación. Polarizabilidad. Efectos aniónicos. Concentración de la solución Externa. Selectividad del sorbente. Iones complementarios. Efecto de histéresis.

Intercambio aniónico. Adsorción aniónica. Energía de retención. Implicancias del intercambio.

Las raíces de las plantas: su función como intercambiadores iónicos. Mecanismos de intercambio iónico: transferencia a través de la solución y por contacto, sus relaciones con la nutrición de las plantas.

D.- REACCIÓN DEL SUELO

Tema 6

Reacción del suelo. Concepto de acidez y alcalinidad de los suelos. pH. Enfoque actual de la clasificación de acidez. Fuentes de acidez. Factores que determinan la acidez actual. Variación de la acidez intercambiable del suelo. Medida de la reacción del suelo (métodos colorimétricos y potenciométricos). Factores que afectan la medición del pH (efecto de dilución, efecto salino y atmósfera de CO2) Curvas de titulación. Capacidad reguladora de los suelos. Caracterización de la capacidad reguladora de los suelos. Efectos de la reacción sobre las características del suelo. Efectos de la reacción sobre los vegetales. Alcalinización del suelo.

E.- BIOLOGIA DEL SUELO Y MATERIA ORGANICA

Tema '

Organismos del suelo. Macro y microzoos. Población microbiana: componentes y factores que afectan su desarrollo.

Acciones benéficas y acciones perjudiciales. Microbiología del suelo: generalidades.

Materia orgánica del suelo (MOS). Definiciones. Origen y composición. Transformaciones de la MOS. Síntesis de las sustancias húmicas. Humificación biológica y abiológica. Factores de la humificación. Humus. Evaluación de la MOS de los suelos. Complejo húmico-arcilloso. Materia orgánica y propiedades de los suelos. Variaciones de la MOS de los suelos. Balance de la MOS del suelo. Contenido de MOS en los suelos argentinos.

F.- PROPIEDADES FISICAS DEL SUELO

Tema 8

Textura. Composición mecánica. Partículas primarias. Clases texturales. Superficie específica. Métodos de determinación. Aspectos prácticos de la textura.

Densidad del suelo. Densidad real. Densidad aparente. Factores que afectan la densidad aparente. Aplicaciones. Métodos de determinación de densidad.

Otros propiedades físicas. Color. Consistencia. Plasticidad.

G.- AGUA DEL SUELO

Tema 9

Introducción. Propiedades del agua. Propiedades del agua relacionadas con fuerzas de retención en el suelo. Características del agua del suelo. Constantes hídricas. Clasificación biológica. Caracterización energética. Unidades de expresión de energía del agua. Contenido hídrico. Curvas de retención hídrica. Efectos que alteran las curvas de retención hídrica. Medición del agua del suelo. Dinámica del agua en el suelo. El continuo suelo-planta-atmósfera. Movimiento del agua en el interior de los suelos. Infiltración del agua: en perfiles uniformes y en perfiles estratificados. Perfil hídrico. Movimiento del agua en el suelo: en flujo saturado y en flujo no saturado. Movimiento en fase de vapor.

H.- ESTRUCTURA DEL SUELO Y PROPIEDADES ASOCIADAS

Tema 10

Definiciones. Formación y estabilización de la estructura. Agregado: definición. Mecanismos de agregación. Esquema de Emerson y nuevos modelos. Modelo de organización de agregados. Dinámica de la estructura.

Estabilidad de los agregados. Factores que favorecen la estabilidad. Mecanismos que operan en la destrucción de los agregados.

Tema 11

Resistencias mecánicas y el crecimiento de los órganos de las plantas. Importancia de las resistencias mecánicas. Presiones y fuerzas axiales y radiales de los órganos subterráneos de las plantas. Resistencias mecánicas y velocidad de crecimiento de las raíces. Anclaje. Costras y terrones en relación con emergencia de las plántulas. Poros rígidos y diámetros críticos para la penetración de las raíces. Los penetrómetros: interpretación de las medidas que permiten.

Capas resistentes (densas y duras). Penetración de las raíces en capas continuas con matriz rígida y matriz deformable. Importancia relativa de las resistencias mecánicas y la aireación del suelo.

Reconocimiento de capas resistentes. Su estructura, estabilidad de los terrones. Interpretación de las observaciones en relación a los problemas que originan, sus soluciones.

Tema 12

Porosidad. Capacidad de aire. Clasificación de los poros según su función en las relaciones suelo-aire-agua. Modificación de la porosidad. Procesos de oxidación-reducción.

Composición del aire del suelo. Factores que influyen. Incidencia en los procesos químicos y biológicos.

Movimiento de los gases en el suelo. Flujo en masa. Difusión del oxígeno: valores críticos.

I.- EL PERFIL DEL SUELO

Tema 13

Concepto de Pedón y Polipedón. Perfil y perfil modal.

Horizonte: definición. Límites: tipo y forma. Nomenclatura: subdivisiones primarias y secundarias; discontinuidades litológicas, diferencias subordinadas. Comparación entre la moderna y la antigua nomenclatura. Caracteres diferenciales y su significación: color, textura, estructura (tipos y grados), consistencia (grados), adhesividad, plasticidad. Caracteres y formaciones especiales: panes, concreciones, barnices, superficies de fricción, krotovinas, eflorescencias, pseudomicelios.

J.- FERTILIDAD QUIMICA DEL SUELO

Tema 14

Fertilidad y productividad. Definiciones.

Factores del crecimiento vegetal relacionados al suelo. Formas disponibles. Ley del mínimo (Liebig). Ley de las respuestas decrecientes (Mitscherlich). Rendimientos porcentuales, unidad Baules. Conceptos de movilidad y de suministro elástico (Bray).

Tema 15

Ciclo del Nitrógeno. Mineralización e inmovilización. Factores que influyen: relación carbono/nitrógeno y humedad del

suelo. Fijación del nitrógeno del aire por bacterias simbióticas, por Azotobacter, por algas azules, por otros mecanismos.

Aporte por las lluvias. Pérdidas por erosión, volatilización y lixiviación. Consumo por las plantas útiles y por las malezas.

Determinación de la aptitud del suelo para abastecer de nitrógeno a los cultivos. Determinación de materia orgánica,

nitrógeno total, nitratos. Ensayos de mineralización (incubación). Fertilidad actual y fertilidad potencial.

Fertilizantes nitrogenados. Principales compuestos. Ventajas e inconvenientes de cada compuesto.

El nitrógeno y la eficiencia del uso del agua. Heno y pasturas. Cosecha de granos.

Tema 16

Formas del fósforo del suelo. Ciclo del Fósforo. Formas adsorbidas por las plantas. Formas disponibles y no disponibles. Fósforo disponible en los suelos de la República Argentina.

Abastecimiento de las plantas. El factor intensidad. El factor capacidad. Velocidad de desorción. Velocidad de absorción por las raíces. Métodos para el estudio del abastecimiento: químico, biológico y con trazadores radioactivos. Movimiento del fósforo en el suelo: flujo en masa y difusión.

Fertilizantes fosfatados. Principales productos fertilizantes, sus reacciones con los compuestos presentes en los suelos. Efecto residual. Selección del fertilizante.

Tema 17

Potasio. Formas disponibles y no disponibles. Fijación y liberación del potasio. Abastecimiento de potasio a las plantas: factor intensidad, factor capacidad, velocidad de desorción. Flujo en masa y difusión. El potasio disponible en los suelos de la República Argentina. Consumo de flujo: sus consecuencias.

Calcio, magnesio y azufre. Conceptos generales. El flujo en masa y la retrodifusión.

Elementos menores. Importancia. El problema de la determinación de sus deficiencias.

K.- SUELOS SALINOS Y SODICOS

Tema 18

Características y clasificación. Efecto de las sales solubles sobre el suelo, la germinación de las semillas y el crecimiento de las plantas. Toxicidad específica.

Efectos del sodio intercambiable sobre el suelo, sobre el crecimiento de las plantas.

Suelos salinos activos. Problemas que plantean. Importancia en la República Argentina.

Clasificación de los suelos salinos y sódicos. La clasificación del Laboratorio de Salinidad de EEUU., sus limitaciones. Otras clasificaciones. Discrepancias respecto del potasio y del magnesio intercambiable.

Tema 19

Fundamentos de la prevención y recuperación. Agua para riego. Peligro de salinidad: aplicaciones excesivas y aplicaciones deficitarias. Peligro de sodificación. El carbonato de sodio residual. Clasificación de las aguas para riego: clasificación del Laboratorio de Salinidad de EEUU. Uso de aguas salinas.

L.- TAXONOMIA DE LOS SUELOS

Tema 20

Objetivos. Reseña histórica de la clasificación de los suelos. Zonalidad. Los grandes grupos de suelos del mundo. Fundamentos de los principales sistemas de clasificación: Kellog, Baldwin y Thorp; séptima aproximación, otras clasificaciones (Canadá, Australia, Francia, Rusia, FAO). Importancia de las condiciones locales en la adaptación de un sistema.

El sistema norteamericano de taxonomía (Soil Taxonomy). Estructura, principios, características, nomenclatura, criterios y aplicaciones. Pirámide taxonómica. Horizontes diagnósticos (epipedón y endopedón) y criterios diferenciantes. Distribución de los órdenes en la Argentina y en la provincia de San Luis.

VII - Plan de Trabajos Prácticos

La modalidad de los prácticos en laboratorio, consiste en trabajos grupales siendo la evaluación y seguimiento a través de: a) _asistencia obligatoria al 100 % de los Trabajos Prácticos, siendo los de campo irrecuperables. Los que posean un 80 % de asistencia a los mismos tendrán opción a recuperar los restantes; b) exámenes parciales de cada uno de los prácticos desarrollados.

1.- Introductorio. Técnicas de muestreo de suelos.

Modalidad: Práctico de LABORATORIO

2.- Rocas y minerales.

Modalidad: Práctico de LABORATORIO

3.- Complejo de intercambio: capacidad de intercambio catiónico y cationes intercambiables.

Modalidad: Práctico de LABORATORIO

4.- pH. Acidez. Necesidad de cal.

Modalidad: Práctico de LABORATORIO

5.- Materia orgánica del suelo.

Modalidad: Práctico de LABORATORIO

6- Densidad aparente. Densidad real. Porosidad.

Modalidad: Práctico de LABORATORIO

7.- Textura. Clases Texturales. Granulometría.

Modalidad: Práctico de LABORATORIO

8.- Agua en el suelo. Constantes hídricas. Movimiento del agua en el suelo.

Modalidad: Práctico de LABORATORIO 9.- Estructura. Estabilidad estructural. Modalidad: Práctico de LABORATORIO

10.- Perfiles de suelos.

Modalidad: Práctico en el CAMPO EXPERIMENTAL

11.- Fertilidad de los suelos. Diagnóstico de dosis de fertilizantes.

Modalidad: Práctico de AULA

12.- Salinidad. Determinación de carbonatos. Efecto de los cationes intercambiables sobre las propiedades físicas de los suelos.

Modalidad: Práctico de LABORATORIO 13.- Análisis de aguas para uso agropecuario: 1ra parte: información necesaria e interpretación.

2da parte: técnicas operatorias y cálculos.

Modalidad: Práctico de AULA

14.- Taxonomía de suelos. Horizontes diagnóstico. Características de las Taxas. Nomenclatura.

Modalidad: Práctico de AULA

(*) Este trabajo práctico no tiene recuperación ya que se realizará por única vez en el cuatrimestre.

VIII - Regimen de Aprobación

Régimen de regularidad de la asignatura:

Podrán cursar la asignatura aquellos alumnos que tengan las correlatividades dispuestas por el plan de estudios vigente. Para obtener la condición de alumno regular de la asignatura los estudiantes deberán: a) aprobar el 100% de los trabajos prácticos con una nota igual o superior al cincuenta por ciento (50 %), b) aprobar los dos exámenes parciales (que serán recuperables) con un porcentaje superior al cincuenta por ciento (50 %) para cada uno.

- 1- Régimen de aprobación por examen final:
- 1.1- Para alumnos regulares:

Los alumnos que cumplan con los requisitos antes mencionados podrán rendir el examen final oral o escrito, a propuesta de la mesa examinadora de la asignatura, cuando el número de alumnos a examinar sea significativo (más de siete).

El examen oral se desarrollara de la siguiente manera: el alumno extraerá dos bolillas y elegirá una del correspondiente programa de examen. Cada Bolilla de examen posee un Trabajo Práctico que el alumno deberá rendir en primer término de acuerdo a la reglamentación vigente, para pasar luego a los temas teóricos específicos en donde será evaluado por el tribunal de la asignatura. El examen escrito se compondrá con temas de la asignatura, con un máximo de dos horas y media (2,5) de tiempo para resolverlo.

1.2- Para alumnos libres:

Los alumnos libres podrán rendir la asignatura cuando posean las correlatividades dispuestas por el plan de estudios vigente Estos deberán cumplimentar con los siguientes requisitos: deberán rendir los trabajos prácticos y contenidos teóricos de la asignatura, y obtener un porcentaje igual o superior al cincuenta por ciento (50 %) para su aprobación mediante un examen escrito, con un máximo de dos horas y media (2,5) de tiempo para resolverlo, que se tomara por la mañana del día asignado al examen de la asignatura. Superado satisfactoriamente el examen escrito deberán aprobar el examen oral correspondiente a un alumno regular.

2- Régimen de aprobación sin examen final:

La asignatura no posee régimen de promoción.

IX - Bibliografía Básica

- [1] BAVER L.D.; W.H. GARDNER y W.R. GARDNER. 1973. Física de suelos. UTEHA. México.
- [2] BLACK C.A. 1965. Methods of soils analisis. American Society of Agronomy. Wiscosin, EEUU.
- [3] BOHN H.L.; B.L. McNEAL y G.A. O'CONNOR. 1993. Química de Suelos. Editorial LIMUSA. México. 370 p.
- [4] BONNEAU M. y SOUCHIER B. 1987. Edafología. Constituyentes y propiedades del suelo. Editorial Masson S.A. Barcelona, España. 461 p.
- [5] BUOL S.W.; F.D. HOLE y R.J. Mc CRACKEN. 1991. Génesis y clasificación de suelos. Editorial Trillas. México. 2da edición. 417 p.
- [6] BUCKMAN H.C. y N. BRADY. 1977. Naturaleza y propiedades de los suelos. UTEHA. Barcelona, España.
- [7] DUCHAUFOUR P. 1987. Manual de Edafología. Editorial Masson S.A. Barcelona, España. 214 p.
- [8] DUCHAUFOUR P. 1984. Edafología. 1 Edafogénesis y clasificación. Editorial Masson S.A. Barcelona, España. 493 p.
- [9] FAO. 1977. Guía para la descripción de perfiles de suelos. Roma. Italia.
- [10] FASSBENDER H.W. y E. BORNEMISZA. 1987. Química de Suelos con énfasis en suelos de América Latina. IICA. San José, Costa Rica. 420 p.
- [11] FITZPATRICK E.A. 1987. Suelos. Su formación, clasificación y distribución. 3ra impresión. Compañía Editorial Continental. México. 430 p.
- [12] FORSYTHE W. 1980. Física de suelos. Manual de laboratorio. IICA. 1ra reimpresión. San José, Costa Rica. 212 p.
- [13] GAVANDE S.A. 1973. Física de suelos. Editorial Limusa. México.
- [14] GAUCHER G. 1971. Tratado de pedología agrícola. El suelo y sus características agronómicas. Ediciones Omega. Barcelona, España.
- [15] HENIN S.; R. GRAS y G. MONNIER. 1972. El perfil cultural. Editorial Mundi Prensa. Madrid, España.
- [16] IGAC, Subdirección Agrológica. 1990. Propiedades físicas de los suelos. Bogotá, Colombia.
- [17] PORTA J.; M. LOPEZ-ACEVEDO y C. ROQUERO. 1994. Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa. Madrid, España. 807 p.
- [18] RUSSELL E.J. y E.W. RUSSELL. 1968. Las condiciones del suelo y el crecimiento de las plantas. Ediciones Aguilar. Madrid, España.

X - Bibliografia Complementaria

- [1] ARENS P. y P. ETCHEVEHERE. 1976. Normas de reconocimiento de suelos. Ultima edición. INTA. Buenos Aires, Argentina.
- [2] ABDON CORTES L. y DIMAS MALAGON C. 1984. Los levantamientos agrológicos y sus aplicaciones múltiples. Universidad de Bogotá "Jorge Tadeo Lozano". Bogotá, Colombia.
- [3] BLOOM A.L. 1974. La superficie de la tierra. Ediciones Omega. Barcelona, España.
- [4] BONNET J.A. 1960. Edafología de los suelos salinos y sódicos. Ultima edición. Estación Experimental Agrícola. Río Piedras, Puerto Rico.
- [5] BURGES A. y F. RAW. 1971. Biología del suelo. Ediciones Omega. Barcelona, España.
- [6] DARWICH N. 1989. Manual de fertilidad de suelos. INTA Balcarce, Argentina. 147 p.
- [7] DOMINGUEZ VIVANCOS A. 1989. Tratado de Fertilización. Ediciones Mundi-Prensa. 2da edición. Madrid, España. 601 p.
- [8] DROSDOFF M.; G. AUBERT; J.K. COULTER y otros. 1975. Suelos de las regiones tropicales húmedas. Ediciones Marymar. Buenos Aires, Argentina.
- [9] IGAC, Subdirección Agrológica. 1990. Métodos analíticos del laboratorio de suelos. Quinta edición. Bogotá, Colombia.
- [10] JACKSON M.L. 1976. Análisis químico de suelos. Editorial Omega. Barcelona, España.
- [11] JUNTA DE EXTREMADURA. 1992. Interpretación de análisis de suelo, foliar y agua de riego. Consejo de abonado (normas básicas). Ediciones Mundi-Prensa. Madrid, España. 280 p.
- [12] MOJICA F.S. 1988. Fertilidad de suelos. Diagnóstico y control. Sociedad Colombiana de la Ciencia del Suelo. Bogotá, Colombia. 473 p.
- [13] POTASH & PHOSPHATE INSTITUTE. 1988. Manual de fertilidad de los suelos. Santiago, Chile. 85 p.
- [14] RIASCOS R.G. 1979. La recomendación de fertilizantes. Fundamentos y aplicaciones. Federación Nacional de Cafeteros de Colombia. Bogotá, Colombia. 68 p.
- [15] SOCIEDAD COLOMBIANA DE LA CIENCIA DEL SUELO. 1988. Fertilidad de suelos. Diagnóstico y control. 3ra edición. F.S. Mujica editor. Bogotá, Colombia. 473 p.

[16] SOIL SURVEY STAFF. 1990. Keys to soil taxonomy. Virginia, EEUU.

[17] TISDALE S.L. y W.L. NELSON. 1970. Fertilidad de los suelos y fertilizantes. Editores Montaner y Simón. Barcelona, España.

[18] THOMPSON, L.M. y F.R. TROEH. 1980. Los suelos y su fertilidad. Editorial Reverté. Barcelona, España.

[19] USDA. 1973. Diagnóstico y rehabilitación de suelos salinos y sódicos. Editorial Limusa. México.

[20] VILLOTA H. 1991. Geomorfología aplicada a levantamientos edafológicos y zonificación de las tierras. IGAC. Bogotá, Colombia.

XI - Resumen de Objetivos

XII - Resumen del Programa

El programa consiste básicamente en los siguientes temas: a) introducción, donde se define el ámbito de la signatura, sus relaciones con otras ciencias y se estudia el material originario de los suelos; b) génesis, donde se discuten los procesos de meteorización y formación de los suelos dentro de un paisaje; c) complejo de intercambio y fenómenos de adsorción, que posibilitan el sostenimiento de la vida en el suelo; d) biología del suelo y materia orgánica, donde se estudia todos los procesos en que participa la misma; e) física de suelos y su importancia para la productividad de los mismos; f) dinámica del agua del suelo; g) estructura, aireación e impedancias mecánicas de los suelos agrícolas; h) el perfil del suelo y su ubicación en el paisaje; i) fertilidad química, donde se estudian las diferentes leyes que gobiernan la disponibilidad de los nutrientes en el suelos; j) suelos salinos y alcalinos, su importancia en las regiones áridas y semiáridas y k) la taxonomía de los suelos.

XIII - Imprevistos

PROGRAMA DE EXAMEN

BOLILLA Nro 1

Temas: 1 - 5 - 13 - 17

Trabajo práctico Nro 1 y 2

BOLILLA Nro 2

Temas: 2 - 6 - 14 - 18

Trabajo práctico Nro 3

BOLILLA Nro 3

Temas: 3 - 7 - 15 - 19

Trabajo práctico Nro 4

BOLILLA Nro 4

Temas: 4 - 8 - 16 - 20

Trabajo práctico Nro 5

BOLILLA Nro 5

Temas: 5 - 9 - 11 - 17

Trabajo práctico Nro 6

BOLILLA Nro 6

Temas: 6 - 10 - 15 - 18

Trabajo práctico Nro 7

BOLILLA Nro 7

Temas: 4 - 7 - 11 - 19

Trabajo práctico Nro 8

BOLILLA Nro 8

Temas: 5 - 8 - 12 - 20

Trabajo práctico Nro 9

BOLILLA Nro 9

Temas: 1 - 9 - 13 - 16

Trabajo práctico Nro 10

BOLILLA Nro 10

Temas: 2 - 10 - 14 - 17

Trabajo práctico Nro 11

BOLILLA Nro 11

Temas: 3 - 6 - 11 - 15

Trabajo práctico Nro 12

BOLILLA Nro 12

Temas: 4 – 7 - 12 – 16 Trabajo práctico Nro 13