

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química, Bioquímica y Farmacia Departamento: Quimica

Area: Qca General e Inorganica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA INORGANICA	ANAL. QUIMICO	7/04	2	1c
QUIMICA INORGANICA	LIC. QUIMICA	5/04	2	1c
QUIMICA INORGANICA	PROF.EN QUIMICA	6/04	2	1c

(Programa del año 2008)

II - Equipo Docente

Docente	Función	Cargo	Dedicación
PEDREGOSA, JOSE CARMELO	Prof. Responsable	P.TIT EXC	40 Hs
AUGSBURGER, MARTA SUSANA	Responsable de Práctico	JTP EXC	40 Hs
LOPEZ, CARLOS ALBERTO	Auxiliar de Laboratorio	A.2DA SIM	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
7 Hs	Hs	Hs	3 Hs	10 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1 Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
10/03/2008	20/06/2008	14	140	

IV - Fundamentación

V - Objetivos

OBJETIVOS GENERALES

Transmitir a los estudiantes los conceptos de la Química Inorgánica necesarios como base para el análisis y justificación de procesos en los que participan compuestos inorgánicos. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente por el alumno, profundizar el grado de conocimiento y proyectar el mismo a las necesidades de cursos superiores.

OBJETIVOS ESPECIFICOS

Lograr que el alumno

- adquiera conocimiento sobre los conceptos de la Química Inorgánica y su relación con temas específicos de su carrera.
- pueda fundamentar las propiedades que presentan los elementos y sus compuestos analizando la Tabla Periódica por grupos, períodos y en forma diagonal.

- integre los conceptos vistos en Química General en análisis de los procesos de Química Inorgánica.
- sepa distinguir los procesos redox y los ácido-base.
- conozca y aplique los principios de la Química de Coordinación
- Identifique la participación de diversas especies en procesos biológicos.
- adquiera adiestramiento en el manejo de técnicas de laboratorio y se inicie en la aplicación de estrategias para resolver problemas concretos en el campo de la Química.

VI - Contenidos

Módulo 1:

Tipos de Sólidos: Concepto de Sólido Amorfo y Cristalino. Celda Unitaria. Red Espacial. Sistemas Cristalográficos. Tipo de Sólidos: iónicos, covalentes, moleculares, metales, aleaciones y amalgamas. El proceso de Cristalización y Solubilidad. Solubilidad de compuestos inorgánicos (Aplicación del concepto de Kps). La cristalización como un proceso de purificación: Fundamentos y técnicas.

Módulo 2:

Reactividad en Química Inorgánica. Variables a tener en cuenta. Conceptos de espontaneidad y labilidad. Reacciones Acido-Base: Conceptos de Lewis y Brönsted-Lowry. Carácter ácido base de especies en solución. Reacciones Redox: : Equilibrios y espontaneidad, sistematización. Complejación: Sustitución. Descomposición Térmica. Reacciones de hidrólisis.

Módulo 3:

Métodos de estudio de la Tabla Periódica. Tendencias periódicas: Estado de agregación de metales y no-metales. Tipos de uniones. Variación de la naturaleza de los sólidos (iónicos, covalentes, moleculares). Carácter metálico. Variación del carácter ácido-base de los óxidos. Acidez de hidruros. Estados de oxidación: Poder polarizante. Variación estructural de los compuestos "uros". Solubilidad de compuestos. Propiedades y tendencias verticales, horizontales y diagonales.

Módulo 4:

Elementos Representativos del grupo 1 y 2. Generalidades. Tendencias y Principales Propiedades. Bioinorgánica de Li, Na, K, Mg y Ca. Toxicidad de berilio. Análisis de algunas tendencias de estos grupos (Seminario).

Módulo 5:

Elementos Representativos del grupo 13 y 14. Generalidades. Tendencias y Principales Propiedades. Bioinorgánica de carbono. Toxicidad de Aluminio, talio, silicio y plomo. Análisis de algunas tendencias de estos grupos (Seminario).

Módulo 6:

Elementos Representativos del grupo 15. Generalidades. Tendencias y Principales Propiedades. Bioinorgánica de nitrógeno y fósforo. Toxicidad de arsénico. Elementos Representativos del grupo 16 y 17. Generalidades. Tendencias y Principales Propiedades. Bioinorgánica de oxígeno, azufre, selenio, fluor, cloro y yodo. Análisis de algunas tendencias de estos grupos (Seminario).

Módulo 7:

Química de Coordinación. Tipos de Ligandos Nomenclatura de complejos. Estereoisomería. Estereoquímica. Conceptos de: complejos, quelatos, aductos, clusters, cúmulos, cubanos, pi-ácidos, organometálicos, metalocenos, clatratos, fullerenos. Teorías de Enlace en Química de Coordinación: Teoría de Lewis. Teoría del Campo Cristalino, Campo Ligando y Teoría del Orbital Molecular. Color y Magnetismo. Estabilidad y Cinética..

Módulo 8:

Elementos de Transición. Generalidades. Tendencias. Principales Propiedades. Lantánidos y Actínidos. Generalidades y Tendencias. Bioinorgánica de vanadio, manganeso, hierro, cobalto, cobre, zinc y molibdeno. Pruebas metálicas con lantano. Análisis de algunas tendencias de estos elementos (Seminario).

Módulo 9: Simetría en Química. Aplicación de Simetría para la clasificación de sólidos. Modelo de empaquetamiento compacto. Redes finitas y redes infinitas. Estructuras típicas. Oxidos mixtos. Sustitución catiónica. Defectos reticulares. Aplicación de difracción de Rx en la determinación de estructuras cristalinas: método de polvos y

monocristal.

Módulo 10: Caracterización de compuestos inorgánicos. Espectroscopía infrarrojo. Fundamentos. Interpretación de espectros. Espectroscopía visible aplicada a compuestos de coordinación. Interpretación. Estados de Russell-Saunders. Diagramas de Orgel. Interpretación de espectros. Técnicas termogravimétricas.

Módulo 11: Sistematización de la Química Redox. Diagramas de Latimer, Diagramas de Ellingham. Otros. Aplicaciones. Procesos metalúrgicos.

Módulo 12: Síntesis en Química Inorgánica. Reacciones en solución. Reacciones al estado gaseoso. Reacciones al estado sólido. Diseño y Procesos.

VII - Plan de Trabajos Prácticos

PLAN DE TRABAJOS DE AULA Y SEMINARIOS.

- 1. Aplicación del concepto de Kps a Solubilidad de compuestos inorgánicos. Manejo de Curvas de Solubilidad. Problemas.
- 2. Cálculos de Reactividad I. (Incluye sólidos, gases y soluciones)
- 3. Cálculos de Reactividad II (Incluye sólidos, gases y soluciones)
- 4. Nomenclatura de complejos. Estereoquímica. Ejercicios.
- 5. Teorías en Química de Coordinación. Ejercicios y Problemas.
- 6. Algunos aspectos sistemáticos de las tres Series de Transición bloque d Resolución de Cuestionarios.
- 7. Elementos Representativos. Resolución de Cuestionarios.
- 8. Determinación de Simetría en especies diversas. Empaquetamientos: cálculos y manejo de modelos.
- 9. Análisis de espectros electrónicos y propiedades magnéticas de complejos.
- 10. Sistemas. Redox. . Usos de Diagramas. Cálculos.
- 11. Síntesis en Química Inorgánica. Cálculos estequiométricos y de rendimiento
- 12. Profundización en los aspectos sistemáticos de las tres Series de Transición bloque d y Elementos Representativos. Seminarios.

PLAN DE TRABAJOS PRACTICOS DE LABORATORIO

- 1. Procesos de Cristalización y Solubilidad. Técnicas de separación por cristalización-precipitación. Disolución. Cristalización. Filtración. Decantación. Centrifugación. Purificación de sólidos: Cristalización fraccionada. Secado de sólidos.
- 2. Reacciones ácido-base, redox y descomposición térmica.

- 3. Principales reacciones de Elementos Representativos. Electrólisis de cloruro de sodio (potenciales). Obtención de geles-coloides Al(OH)3 y H2SiO3 y otros.
- 4. Síntesis de Complejos por diversas técnicas.
- 5. Equilibrios ácido-base y redox en 1ra Serie de Transición. Equilibrios ácido-base y redox en Post-transición, 2da y 3ra Serie de Transición.
- 6. Diagramas de Rx
- 7. Espectros IR Termogravimetría
- 8. Espectros visibles
- 9. Síntesis en Química Inorgánica

VIII - Regimen de Aprobación

Para adquirir la condición de alumno Regular deberá:

- a- Asistir al 80% de las Clases Teórico-prácticas
- b- Aprobar cuestionario sobre Temas de Higiene y Seguridad en el Laboratorio
- c- Realizar y Aprobar el 100% de los Trabajos Prácticos de Laboratorio.
- d- Presentar y Aprobar los Informes correspondientes a los Trabajos PRácticos de uso de instrumental
- e- Aprobar el 100% de los Exámenes Parciales con un 70 % de respuestas correctas, teniendo derecho a las Recuperaciones pautadas en las reglamentaciones vigentes (Ord. 13/03 y correspondientes de la FQBF)

IX - Bibliografía Básica

- [1] F. A. Cotton y G. Wilkinson, "Química Inorgánica Avanzada", Trad. Española de la 4ta Edición, Ed. Limusa, México, 1990.
- [2] D.M.P. Mingos, ""Essential Trends in Inorganic Chemistry", Oxford University Press, Oxford, 1998.
- [3] I. S. Butler y J. F. Harrod, "Química Inorgánica: Principios y Aplicaciones", Trad. española, Addison-Wesley Iberoamericana, Delawere, USA, 1992.
- [4] A. G. Sharpe, "Química Inorgánica", Editorial Reverté, Barcelona-Bs.As, 1989.
- [5] C. E. Housecroft, A.G. Sharpe "Química Inorgánica", Pearson Prentice Hall. Pearson Educación S.A., Madrid, 2006.
- [6] G. E. Rodgers, "Química Inorgánica: Introducción a la Química de Coordinación, Estado Sólido y Descriptiva Mc.Graw-Hill, Madrid-Buenos Aires, 1995.
- [7] J. E. Huheey, "Química Inorgánica: Principios de Estructura y Reactividad", Harla S.A., 1981.

X - Bibliografia Complementaria

- [1] G.L.Miessler and D. A. Tarr, "Inorganic Chemistry", 2da Ed., Prentice Hall, New Jersey, 1998.
- [2] W.W.Porterfield, "Inorganic Chemistry. A Unified Approach", Addison-Wesley Publishing Company, USA, 1984.
- [3] D.f.Shriver, P.W.Atkins and C.H.Langford, "Inorganic chemistry", Oxford University Press, Oxford, 1990
- [4] N.N.Greenwood and a. Earnshaw, "Chemistry of the Elements", 5ta Ed., Pergamon Press, Oxford, 1986.
- [5] E. J. Baran, "Química Bioinorgánica", McGraw-Hill, Madrid, 1994.
- [6] D.M.Adams, "Inorganic Solids", Wiley, New York, 1974.
- [7] B. Douglas, D. McDaniel and J. Alexander, "Concepts and models of Inorganic Chemistry", J. Wiley and Sons, New York, 1994.

XI - Resumen de Objetivos

Transmitir a los estudiantes los conceptos de la Química Inorgánica necesarios como base para el análisis y justificación de

procesos en los que participan compuestos inorgánicos. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente por el alumno, profundizar el grado de conocimiento y proyectar el mismo a las necesidades de cursos superiores.

XII - Resumen del Programa

Los sólidos y los procesos de separación en Química Inorgánica. Reactividad en Química Inorgánica: Procesos ácido-base y redox. Química del Estado Sólido. Química de Coordinación: conceptos y teorías. Bioinorgánica. Estudio general fundamentado de las tendencias de propiedades verticales, horizontales y diagonales en la Tabla Periódica.

XIII - Imprevistos