

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química, Bioquímica y Farmacia Departamento: Química

Area: Tecnología Química y Biotecnología

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
OPERACIONES UNITARIAS III	ING. EN ALIMENTOS	24/01	5	1c

(Programa del año 2005)

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ACOSTA, ADOLFO ORLANDO	Prof. Responsable	P.ADJ EXC	40 Hs
CAMPDERROS, MERCEDES EDITH	Prof. Colaborador	P.ADJ EXC	40 Hs
MARCHESE, JOSE	Prof. Colaborador	P.TIT EXC	40 Hs
OCHOA, NELIO ARIEL	Responsable de Práctico	JTP EXC	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
120 Hs	Hs	Hs	Hs	9 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1 Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
14/03/2005	17/06/2005	14	120	

IV - Fundamentación

La Ingeniería en Alimentos es una rama especializada de la Ingeniería, que se funda desde ciencias básicas y se proyecta dando sustento a las tecnologías respectivas y aspectos ingenieriles orientados al diseño y a la obtención de alimentos sanos y de calidad.

Dentro de las Tecnologías Aplicadas se encuentra las Operaciones Unitarias III cuya área temática comprende a las operaciones de transferencia de materia y transferencia simultánea de materia y energía que están presentes en procesos separativos o de purificación en la industria alimentaria. Los conocimientos logrados en esta área temática constituyen una herramienta fundamental para el análisis, diseño, control, evaluación y modificación de las distintas operaciones utilizadas en la producción de alimentos

V - Objetivos

Impartir conocimientos básicos en operaciones unitarias basadas en transferencia de materia y transferencia simultánea de calor y materia que son de interés en la práctica industrial tales como: Absorción, Destilación, Extracción, Lixiviación, Secado y Operaciones con Transporte de Materia en Fases Separadas por Membranas. Capacitar al alumno para el análisis y dimensionamiento de equipos utilizados en cada una de estas operaciones básicas. Aplicar los conocimientos de fenómenos de transporte a los procesos de involucrados en las operaciones unitarias.

VI - Contenidos

-Tema 1: Operaciones con transporte de materia en la interfase gas-líquido.

Absorción: Solubilidad de Gases en Líquidos en el Equilibrio: Sistemas de dos componentes. Sistemas multicomponentes. Soluciones ideales y no ideales. Elección del disolvente para la absorción. Transferencia de un Componente. Balance de Materia: Flujo a Contracorriente. Relación mínima líquido-gas. Flujo en corriente paralela. Operación a Contracorriente en Varias Etapas: Mezclas diluidas de gases. Factor de absorción. Platos reales y eficiencia de plato. Equipos de Contacto Continuo: Altura equivalente de plato teórico. Número de unidad transferida. Altura de unidad transferida para soluciones diluidas. Métodos gráficos para el cálculo del número de unidades de transferencia y altura de unidad de transferencia.

Destilación: Introducción. Equilibrio Líquido-Vapor: Diagrama de fases presión-temperatura-concentración. Equilibrio a presión constante. Equilibrio a temperatura constante. Soluciones ideales. Desviaciones del comportamiento ideal. Métodos de operación aplicados a destilación: Destilación de una sola etapa. Destilación diferencial. Destilación por arrastre de vapor. Rectificación continua. Principios de diseño de columna. Método de McCabe-Thiele: Balance para un plato. Etapas de equilibrio. Determinación de platos mínimos y reflujo mínimo. Condensadores parciales.

Tema 2: Operaciones con transporte de materia en la interfase líquido-líquido y sólido -líquido

Extracción: Introducción. Equilibrio líquido-líquido: Diagramas triangulares. Diagramas de Distribución. Selectividad. Criterios de selección del solvente. Operación en una etapa. Operación en varias etapas: Corriente cruzada. Contracorriente. Balance económico. Equipos. Diseño.

Lixiviación: Introducción: Equilibrio sólido-líquido. Cinética. Factores que influyen en extracción. Preparación del sólido. Temperatura de lixiviación. Lixiviación en una etapa y en varias etapas. Cálculos y diagramas de equilibrio. Equipos de extracción sólido- líquido. Lixiviación de semillas vegetales. Extracción supercrítica

Cristalización: Introducción. Equilibrio solido-líquido. Cristalización-saturación. Metaestabilidad. Solubilidad-Temperatura. Pureza. Generación de cristales. Nucleación y velocidad de crecimiento de cristales. Calor de cristalización Cristalización en equilibrio: Aplicación a la manufactura de azúcar. Balance. Equipos de utilizados en cristalización

Tema 3: Operaciones con transporte de materia en la interfase gas-sólido

Secado. Introducción. Curva de Equilibrio: definiciones. Ensayos de secado: Régimen de velocidad de secado constante. Régimen de velocidad de secado decreciente. Comportamiento de los materiales en el secado. Cálculo del tiempo de secado. Operaciones de secado: Secado por lotes. Secado continuo. Equipos. Mecanismos de secado por lotes: secado por circulación tangencial. Evolución de la humedad del sólido: difusión del líquido y por movimiento capilar. Mecanismos de secado continuo: Balance de materia y entalpía. Velocidad del secado para secadores de calentamiento directo continuo: Secado bajas y altas temperaturas. Liofilización: Teoría. Velocidad de transferencia calórica y de masa. Instalaciones. Efecto sobre los alimentos.

Tema 4: Operaciones con transporte de materia en fases separadas por membranas

Introducción y clasificación de los procesos separativos por membranas. Módulos de membranas Industriales. Procesos impulsados por concentración (permeación de gases, preevaporación, diálisis). Aplicaciones. Procesos impulsados por potencial eléctrico: (electrodiálisis) Aplicaciones. Diseño de Proceso impulsados por presión.

VII - Plan de Trabajos Prácticos

TRABAJOS PRACTICOS DE AULA:

Trabajos Prácticos de Aula:

Problemas sobre: Balances de masa. Cálculos del numero de etapas y altura de unidades de transferencia. Eficiencia de separación en operaciones como: Absorción, Destilación, Secado, Extracción liquido-liquido, Lixiviación. Procesos con Membranas

TRABAJOS PRACTICOS DE LABORATORIO:

Se proponen efectuar los siguiente trabajos prácticos, la realización de algunos de ellos estará sujeta a la disponibilidad de equipamiento:

- 1. Absorción física de CO2 en una torre de esferas.
- 2.Lixiviación: Obtención de pigmentos naturales y azúcares a partir de remolacha (beta vulgaris)
- 3. Permeabilidad de O2 en películas poliméricas multicapas para envases.
- 4. Clarificación de Jugos de Fruta. Influencia de las variables operacionales en la formación del cake

VIII - Regimen de Aprobación

REGIMEN PARA ALUMNOS REGULARES

- 1.INSCRIPCION: Podrán inscribirse y cursar como regulares aquellos alumnos que hayan aprobado la asignatura Fisicoquímica Aplicada y regularizada la asignatura Operaciones Unitarias II.
- 2.TRABAJOS PRACTICOS: La asistencia a los trabajos prácticos es obligatoria. El alumno deberá aprobar en primera instancia el 75% del plan de trabajos prácticos, deberá completar el 90% en la primera recuperación y 100% en una segunda recuperación.
- 1.EVALUACIONES PARCIALES Y RECUPERACIONES: Se realizarán (3) Examinaciones parciales escritas sobre problemas de aula y trabajos prácticos de laboratorio. El alumno tendrá derecho a una (1) recuperación por cada parcial y no mas de 2(dos) [OCS Nª13 art 24 inc(b)]. El alumno que trabaja y la alumna que es madre de un hijo menor de 6 años, tendrán derecho a una recuperación mas sobre el total de la Evaluaciones Parciales establecida. La nota de aprobación de cada evaluación no será menor de 7 (siete). La ausencia a los parciales deberá ser adecuadamente justificada, en caso contrario se considerará no aprobado mereciendo una calificación de 1 (uno).
- 3.EXAMEN FINAL: Podrán rendir el examen final de la asignatura los alumnos que hayan cumplido con los requisitos de regularización establecida en la presente asignatura y además hayan aprobado en forma completa la asignatura Operaciones Unitarias II.

REGIMEN PARA ALUMNOS PROMOCIONALES

- 1. INSCRIPCION: Podrán cursar por el Régimen de Promoción de la asignatura, los alumnos que hayan aprobado en forma completa la materia Operaciones Unitarias II .
- CLASES TEORICAS: Para mantener la condición de alumno promocional deberá asistir al 80% de las actividades teóricas programadas.
- 3. TRABAJOS PRACTICOS: El alumno deberá aprobar en primera instancia el 80% de los trabajos prácticos, debiendo tener al finalizar el curso el 100% de los mismos aprobados.

Deberá completar el 90% en la primera recuperación y 100% en una segunda recuperación.

- 4. EVALUACION PARCIALES Y RECUPERACIONES: Se realizarán (2) evaluaciones parciales teóricas escritas y (3) evaluaciones parciales de trabajos prácticos escritas, las cuales comprenderán la totalidad de los temas del Programa de Exámen de la Asignatura. El alumno tendrá derecho a recuperar (1) Evaluación de Teoría y (1) Evaluación de Trabajos Prácticos. La nota de aprobación de cada evaluación no será menor de 7 (siete). En caso de ausente sin justificación a una evaluación, el alumno tendrá una calificación de 1 (uno), la cual será promediada.
- 5. PERDIDA DE PROMOCIÓN: En caso de no cumplir con alguna de las condiciones establecidas del régimen para alumnos promocionales, el alumno pasará automáticamente a la condición de regular, debiendo cumplir con lo establecido en el reglamento para alumnos regulares.
- 6. NOTA DEFINITIVA: : La calificación final de la asignatura resultará del promedio de todas las calificaciones obtenidas en las evaluaciones parciales, incluyendo no aprobadas. Se calificará de 1 a 10 y considerándose los centésimos.

IX - Bibliografía Básica

- [1] Treybal R.E., Operaciones de transferencia de masa, Ed. Mc.Graw Hill. Ed., 1980.
- [2] Backhurst J.R., Haker J.H. and Porter J.E., Problems in Heat and Mass Transfer, Ed. Arnold Pub., 1980.
- [3] Hirschfelders, Curtiss C., Bird B. Molecular Theory of Gases and Liquids. Ed. Wiley & Sons.
- [4] Hines A., Maddox R., Mass Transfer. Fundamentals and Applications. Prentice Hall, Inc., 1985.
- [5] Geankoplis, C.J., Transport Processes and Unit Operations. 3°Ed. Prentice-Hall, Inc.,1993
- [6] Gaskell D., An Introduction to transport phenomena in Materials engineering, Ed. Macmillan, 1992.
- [7] Foust A.S., Wenzal L.A., Clump C.W., Principios de Operaciones Unitarias, Cía.Ed. Continental S.A., 1974.
- [8] F. Rodríguez y col. Ingeniería de la Industria Alimentaria Vol II. Operaciones de Procesados de Alimentos. Ed. Síntesis. 2002
- [9] Pavlov K.F., Romankov P.G., Noskov A., Problemas y Ejemplos para operaciones Unitarias Básicas y Aparatos en Tecnología Química, Moscú, 1981.
- [10] Fellows P, Tecnología del procesado de alimentos, Editorial Acribia, S.A., Zaragoza, España, Cap 20, 1994.
- [11] Marchese y col., Membranas. Procesos con Membranas. Ed. Univ., 1995.
- [12] Noble R.D. and Stern S.A., Membrane Separations Technology. Principles and Applications. Ed. Elsevier, 1995.
- [13] Cheryan M., Ultrafiltration Handbook. Technomic Publisshing Co. Inc ISBN Nº 87762-456-9, 1986
- [14] Rautenbach.R Albrecht R., Membrane Processes. Ed. Wiley & Sons. 1989
- [15] R.R. Bhave, Inorganic Membranes. Synthesis, Characteristics and Applications. Ed. Chapman & Hall (1991)

X - Bibliografia Complementaria

[1] Trabajos de especialistas, Manuales de Ingeniería, Revistas especializadas en ingenieria en alimentos

XI - Resumen de Objetivos

Lograr que el alumno desarrolle capacidad para el análisis y diseño de equipos de transferencia de materia y de transferencia simultánea de calor y materia. Aplicar la dicha transferencia a través de una interfase, que implique un cambio en la composición de soluciones y mezclas en operaciones de importancia industrial tales como: Absorción, Destilación, Extracción líquido liquido, Extracción sólido-líquido, Secado y Procesos con membranas

XII - Resumen del Programa

Operaciones unitarias con contacto directo de dos fases inmiscibles a) gas-líquido: absorción, destilación b) líquido-líquido: extracción y sólido-líquido: lixiviación, secado. Balances. Condiciones de equilibrio. Cálculo de eficiencia. Número de unidades transferidas. Altura de unidad transferida. Equipos. Fases separadas por membranas: procesos de separación por membranas.

XIII - Imprevistos

No se preveen