Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico-Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2007)
I - Oferta Académica
Materia Carrera Plan Año Periodo
MATEMATICAS ESPECIALES ING. EN ALIMENTOS 24/01 2 2c
II - Equipo Docente
Docente Función Cargo Dedicación
TALA, JOSE ELIAS Prof. Responsable P.ADJ EXC 40 Hs
RANZUGLIA, GABRIELA ALICIA Responsable de Práctico A.1RA EXC 40 Hs
ARRIBILLAGA, ROBERTO PABLO Auxiliar de Práctico A.1RA SEM 20 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 3 Hs.  Hs. 6 Hs. 2 Cuatrimestre 06/08/2007 09/11/2007 14 84
IV - Fundamentación
Este curso se ubica en el segundo cuatrimestre del segundo año en el Plan de Estudio de la correspondiente carrera. Esto se debe a que utiliza como conocimientos previos los desarrollados en Análisis Matemático I, Álgebra y Análisis Matemático II, con el apoyo de conceptos que involucran fenómenos físicos para su aplicación. Todos los temas a tratar en el curso intentan dar fundamento teórico a posteriores modelos matemáticos representativos de fenómenos particulares, como así también analizar fenómenos y determinar modelos simplificados que los representen. También se pretende dar métodos de resolución de dichos modelos estándar.
V - Objetivos
Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.
Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace.
Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería.
Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería.
Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos , etc.
VI - Contenidos
Unidad 1: Ecuaciones Diferenciales Ordinarias
Ecuaciones diferenciales de primer orden: Conceptos e ideas básicas. Ecuaciones diferenciales separables. Ecuaciones diferenciales lineales. Campos direccionales, iteración. Existencia y unicidad de las soluciones. Modelado: Fechamiento por carbono radiactivo. Ley de enfriamiento de Newton. Evaporación. Circuitos eléctricos

Unidad 2: Ecuaciones Diferenciales Lineales de Segundo Orden
Ecuaciones lineales homogéneas. Ecuaciones homogéneas con coeficientes constantes. Función exponencial compleja. Ecuación de Euler-Cauchy. Teoría de existencia y unicidad. Wronskiano. Ecuaciones no homogéneas. Solución por coeficientes indeterminados. Solución por variación de parámetros. Modelado: oscilaciones libres (sistema masa-resorte). Oscilaciones forzadas. Circuitos eléctricos.

Unidad 3: Transformada de Laplace
Transformada de Laplace. Transformada inversa. Linealidad. Transformadas de derivadas e integrales. Traslación. Función escalón unitario. Función Delta de Dirac. Derivación e integración de transformadas. Convolución.

Unidad 4: Series de Fourier
Funciones periódicas. Series trigonométricas. Series de Fourier: Fórmulas de Euler para los coeficientes de Fourier Ortogonalidad del sistema trigonométrico. Convergencia y suma de series de Fourier. Funciones de cualquier periodo p. Funciones pares e impares. Desarrollos de medio rango.

Unidad 5: Ecuaciones Diferenciales Parciales
Conceptos básicos. Modelado: cuerda vibratoria y ecuación de onda. Separación de variables, uso de series de Fourier. Cuerda vibrante si la deflexión inicial es triangular. Ecuación del calor: solución por series de Fourier. Flujo de calor bidimensional de estado estacionario: problema de Dirichlet. Potencial electrostático. Membrana elástica. Membrana rectangular: uso de series dobles de Fourier. Solución por transformadas de Laplace.

Unidad 6: Números Complejos. Funciones Analíticas Complejas
Números complejos, el plano complejo. Forma polar de los números complejos. Potencias y raíces. Fórmula de De Moivre. Raíz n-ésima de la unidad. Circunferencia unitaria.

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.
VIII - Regimen de Aprobación
I: Sistema de regularidad
• Es obligatoria la asistencia al 80 de las clases.
• Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 60%. Cada una de ellas tendrá una recuperación.
• En caso de no aprobar algunas de estas evaluaciones parciales, podrá lograr la condición de alumno regular rindiendo una evaluación general que consiste de los temas evaluados en las dos pruebas.
• Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad.

II: Sistema de promoción
• La materia se podrá aprobar directamente, sin el examen final (promoción) obteniendo calificación no inferior al 70% en cada una de las evaluaciones parciales o en la recuperación y aprobando una evaluación integradora oral.
• El alumno que aprobó alguna evaluación con menos del 70% (obtuvo entre 60% y menos del 70%) puede presentarse a la correspondiente recuperación para intentar la promoción. La nota que se le considerará será la última obtenida.

III.- Para alumnos libres:
La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico.
IX - Bibliografía Básica
[1] • "Matemáticas Avanzadas para Ingeniería". Kreyszig. Limusa Wiley – 2000. Tomo I y II.
[2] • "Ecuaciones Diferenciales Elementales y Problemas con Valores en la Frontera". W.E. Boyce y R.C. DiPrima, Limusa, 1994.
X - Bibliografia Complementaria
[1] • "Ecuaciones Diferenciales en Derivadas Parciales". H.F. Weinberger. Reverté – 1970
XI - Resumen de Objetivos

Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.
Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace.
Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería.
Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería.
Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos , etc.
XII - Resumen del Programa
Unidad 1: Ecuaciones Diferenciales Ordinarias
Unidad 2: Ecuaciones Diferenciales Lineales de Segundo Orden
Unidad 3: Transformada de Laplace
Unidad 4: Series de Fourier
Unidad 5: Ecuaciones Diferenciales Parciales
Unidad 6: Números Complejos. Funciones Analíticas Complejas
XIII - Imprevistos